

[www.janitza.com](http://www.janitza.com)

03/2025

Doc. no. 2.067.005.1.b

Janitza electronics GmbH  
Vor dem Polstück 6  
35633 Lahnau | Germany  
Support: +49 6441 9642-22  
info@janitza.com | www.janitza.com

Energy Analyzer  
**UMG 96-EL**  
as of firmware version 1.0.0

User manual and technical data

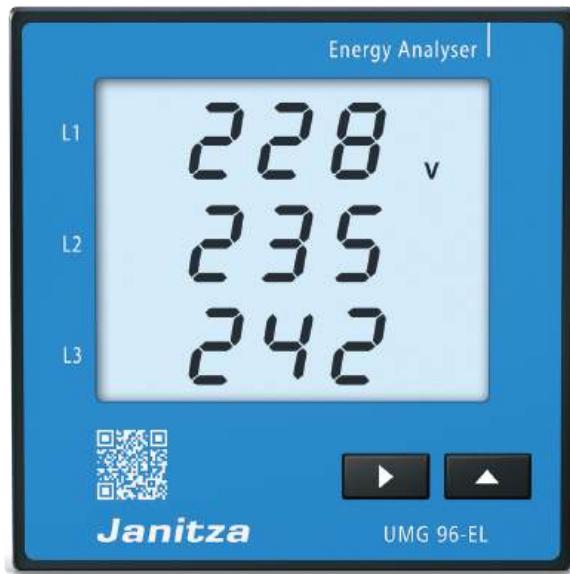



Image may differ from the original!

**Janitza®**

**UMG 96-EL**

**Compact energy analyzer with Ethernet**

Doc. no. 2.067.005.1.b

03/2025

The German version is the original version of the documentation.

## Subject to technical alterations.

The contents of our documentation have been compiled with great care and reflect the current state of the information available to us. Nonetheless, we wish to point out that updates of this document are not always possible at the same time as technical refinements are implemented in our products. Information and specifications are subject to change without notice.

Please check for the latest version at [www.janitza.com](http://www.janitza.com).

## Information about the GridVis® software.

 Janipedia: [wiki.janitza.com](http://wiki.janitza.com)

 Tutorials: [youtube.com/@gridvis](http://youtube.com/@gridvis)

## TABLE OF CONTENTS

|                                                                                                                                 |           |
|---------------------------------------------------------------------------------------------------------------------------------|-----------|
| <b>1. Information on the device and the user manual . . . . .</b>                                                               | <b>8</b>  |
| 1.1    Disclaimer . . . . .                                                                                                     | 8         |
| 1.2    Copyright notice . . . . .                                                                                               | 8         |
| 1.3    Technical changes. . . . .                                                                                               | 8         |
| 1.4    About this user manual. . . . .                                                                                          | 8         |
| 1.5    Defective device/disposal . . . . .                                                                                      | 9         |
| <b>2. Safety . . . . .</b>                                                                                                      | <b>10</b> |
| 2.1    Display of warning notices and safety information. . . . .                                                               | 10        |
| 2.2    Hazard levels. . . . .                                                                                                   | 10        |
| 2.3    Product safety. . . . .                                                                                                  | 10        |
| 2.4    Dangers when handling the device. . . . .                                                                                | 11        |
| 2.5    Electrically qualified personnel . . . . .                                                                               | 12        |
| 2.6    Warranty in the event of damage . . . . .                                                                                | 12        |
| 2.7    Safety information for handling current transformers and measurement devices with residual current measurement . . . . . | 12        |
| <b>3. Product description . . . . .</b>                                                                                         | <b>14</b> |
| 3.1    Device description . . . . .                                                                                             | 14        |
| 3.2    Incoming goods inspection. . . . .                                                                                       | 14        |
| 3.3    Intended use . . . . .                                                                                                   | 15        |
| 3.4    Performance characteristics . . . . .                                                                                    | 15        |
| 3.5    Conformity declaration . . . . .                                                                                         | 16        |
| 3.6    FCC Declaration of Conformity. . . . .                                                                                   | 16        |
| 3.7    Scope of delivery . . . . .                                                                                              | 16        |
| 3.8    Accessories. . . . .                                                                                                     | 16        |
| 3.9    Measuring method . . . . .                                                                                               | 17        |
| 3.10    Transformers . . . . .                                                                                                  | 17        |
| 3.11    Operating concept . . . . .                                                                                             | 17        |
| 3.12    GridVis network analysis software . . . . .                                                                             | 17        |
| <b>4. Structure of the device. . . . .</b>                                                                                      | <b>18</b> |
| 4.1    Front panel - Display and controls . . . . .                                                                             | 18        |
| 4.2    Rear of the device - Connections . . . . .                                                                               | 19        |
| 4.3    Rating plate. . . . .                                                                                                    | 20        |
| <b>5. Mounting. . . . .</b>                                                                                                     | <b>21</b> |
| 5.1    Installation location . . . . .                                                                                          | 21        |
| 5.2    Mounting orientation. . . . .                                                                                            | 21        |
| 5.3    Securing . . . . .                                                                                                       | 21        |

|                                                                                   |    |
|-----------------------------------------------------------------------------------|----|
| 6. Grid systems .....                                                             | 22 |
| 7. Installation .....                                                             | 23 |
| 7.1    Nominal voltages .....                                                     | 23 |
| 7.1.1    Three-phase four-conductor network with grounded neutral conductor ..... | 23 |
| 7.1.2    Three-phase three-conductor system .....                                 | 24 |
| 7.2    Circuit breaker .....                                                      | 24 |
| 7.3    Supply voltage .....                                                       | 24 |
| 7.4    Voltage measurement .....                                                  | 26 |
| 7.4.1    Voltage transformers .....                                               | 26 |
| 7.4.2    Overvoltage .....                                                        | 26 |
| 7.4.3    Connection variants for voltage measurement .....                        | 27 |
| 7.4.4    Frequency .....                                                          | 28 |
| 7.5    Current measurement .....                                                  | 29 |
| 7.5.1    Connection variants for current measurement .....                        | 30 |
| 7.5.2    Current direction .....                                                  | 31 |
| 7.5.3    Summation current measurement .....                                      | 31 |
| 7.5.4    Ammeter .....                                                            | 31 |
| 8. Connection and PC connections .....                                            | 32 |
| 8.1    Ethernet port .....                                                        | 32 |
| 8.2    Connection variants .....                                                  | 32 |
| 8.3    GridVis Quick Guide .....                                                  | 33 |
| 8.4    Ports used .....                                                           | 33 |
| 9. Operation and button functions .....                                           | 34 |
| 9.1    Operation .....                                                            | 34 |
| 9.2    Button functions .....                                                     | 35 |
| 9.3    Measuring display (examples) .....                                         | 36 |
| 9.4    Parameter display (example) .....                                          | 36 |
| 10. Configuration .....                                                           | 37 |
| 10.1    Applying the supply voltage .....                                         | 37 |
| 10.2    Programming menu – Overview .....                                         | 37 |
| 10.3    Open programming mode and enter password .....                            | 38 |
| 10.4    Setting the current transformer (CT) .....                                | 38 |
| 10.5    Setting the voltage transformer (VT) .....                                | 39 |
| 10.6    Set parameters .....                                                      | 39 |
| 10.7    Dynamic or static IP address .....                                        | 40 |
| 10.8    Configuring IP address manually .....                                     | 40 |
| 10.8.1    Configuring a static IP address (Adr) .....                             | 41 |
| 10.8.2    Configuring the subnet mask (SUb) and gateway (GAt) .....               | 41 |

|                                                                            |           |
|----------------------------------------------------------------------------|-----------|
| <b>11. Configuration</b> .....                                             | <b>42</b> |
| 11.1    User password (addr. 050) .....                                    | 42        |
| 11.2    Mains frequency (addr. 034) .....                                  | 43        |
| 11.3    LCD contrast (addr. 035) .....                                     | 43        |
| 11.4    LCD brightness .....                                               | 43        |
| 11.5    Display profile (addr. 037) .....                                  | 44        |
| 11.6    Display change profile (addr. 038) .....                           | 44        |
| 11.7    Changeover time (addr. 039) .....                                  | 44        |
| 11.8    Averaging time for average values .....                            | 45        |
| 11.9    TDD nominal current (addr. 043) .....                              | 45        |
| 11.10    Minimum and maximum values .....                                  | 45        |
| 11.11    Energy meters and tariffs .....                                   | 46        |
| 11.12    Clear energy meter (addr. 507) .....                              | 46        |
| 11.13    Firmware version .....                                            | 46        |
| 11.14    Serial number (addr. 754) .....                                   | 46        |
| 11.15    Comparator for limit value monitoring .....                       | 47        |
| <b>12. Commissioning</b> .....                                             | <b>50</b> |
| 12.1    Applying the supply voltage .....                                  | 50        |
| 12.2    Apply measured voltage .....                                       | 50        |
| 12.3    Applying the measured current .....                                | 50        |
| 12.4    Checking the frequency and direction of rotary field .....         | 51        |
| 12.5    Checking the phase assignment .....                                | 51        |
| 12.6    Checking the active power measurement .....                        | 51        |
| 12.7    Checking the apparent power measurement .....                      | 51        |
| 12.8    Checking summation power .....                                     | 52        |
| 12.9    Checking the communication .....                                   | 52        |
| 12.10    Clear meter readings .....                                        | 52        |
| <b>13. Operation</b> .....                                                 | <b>53</b> |
| 13.1    Time recording .....                                               | 53        |
| 13.2    Reading out the operating hours meter .....                        | 53        |
| 13.3    Reading out the total running time of the comparators .....        | 53        |
| 13.4    Displaying harmonics .....                                         | 54        |
| <b>14. Overview of measuring displays – display profiles 1 and 2</b> ..... | <b>55</b> |
| 14.1    Overview of automatic display changes, profiles 1 to 3 .....       | 58        |
| <b>15. Error messages and overrange measurements</b> .....                 | <b>59</b> |
| 15.1    Overrange measurements .....                                       | 59        |
| 15.2    Error messages .....                                               | 60        |

|                                                                     |           |
|---------------------------------------------------------------------|-----------|
| <b>16. Procedure in the event of a malfunction</b> .....            | <b>61</b> |
| <b>17. Service and maintenance</b> .....                            | <b>62</b> |
| 17.1    Repair and calibration .....                                | 62        |
| 17.2    Front panel foil and display .....                          | 62        |
| 17.3    Service .....                                               | 62        |
| 17.4    Device adjustment .....                                     | 62        |
| 17.5    Firmware update .....                                       | 62        |
| <b>18. Technical data</b> .....                                     | <b>63</b> |
| 18.1    Performance characteristics of functions .....              | 66        |
| <b>19. Appendix</b> .....                                           | <b>67</b> |
| 19.1    Modbus addresses of frequently used measured values .....   | 67        |
| 19.2    Number formats .....                                        | 68        |
| 19.3    Note on saving measured values and configuration data ..... | 68        |
| 19.4    Dimensional drawings .....                                  | 69        |
| 19.5    Connection example .....                                    | 70        |
| 19.6    Quick guide to operation .....                              | 71        |

## 1. Information on the device and the user manual

### 1.1 Disclaimer

Compliance with the usage information for the devices is a prerequisite for safe operation and attaining the stated performance characteristics and product features.

Janitza electronics GmbH assumes no liability for bodily injury, material damage or financial losses which result from disregard of the usage information.

Make sure that your usage information is readily available and legible.

### 1.2 Copyright notice

© 2025 - Janitza electronics GmbH - Lahnau.  
All rights reserved.

Any reproduction, processing, distribution or other use, in whole or in part, is prohibited.

All trademarks and the rights arising from them are the property of the respective owners of these rights.

### 1.3 Technical changes

- Make sure that your device matches the user manual.
- This user manual applies to the UMG 96-EL measurement device.  
Separate validities and distinctions are marked.
- First make sure you have read and understood the usage information accompanying the product.
- Keep the usage information associated with the product available for the entire service life and pass it on to any possible subsequent users.
- Find out about device revisions and the associated modifications of the usage information associated with your product at [www.janitza.com](http://www.janitza.com).
- This manual is also valid for alternative device fronts.

### 1.4 About this user manual

If you have questions, suggestions or ideas for improvement of the user manual, please let us know via email at: [info@janitza.com](mailto:info@janitza.com).

#### INFORMATION

This user manual describes the UMG 96-EL device and provides information on its operation.

In addition to this user manual, please refer to additional usage information for your device, such as:

- Installation manual.
- "Safety Information" supplement.

Furthermore, online help for the **GridVis software** is available at [wiki.janitza.com](http://wiki.janitza.com).

The illustrations and figures in this user manual may differ from the actual state of the device delivered!

#### INFORMATION

Our usage information uses the grammatical masculine form in a gender-neutral sense! This form always refers equally to women, men and diverse. In order to make the texts more readable, distinctions are not made. We ask for your understanding for these simplifications.

## 1.5 Defective device/disposal

Before sending **defective devices, modules or components** back to the manufacturer for testing:

- Contact the manufacturer's Support department.
- Send devices, modules or components complete with all accessories.
- When doing so, please bear the terms for transportation in mind.

---

### **INFORMATION**

Please return defective or damaged devices to Janitza electronics GmbH in accordance with the shipping instructions for air or road freight (complete with accessories).

Observe special regulations for devices with built-in batteries or rechargeable batteries!

---

Do not attempt to open or repair the device (the component) on your own because otherwise all warranty claims become invalid!

For the **Disposal** of the device please observe national regulations! Dispose of individual parts, as applicable, depending on their composition and existing country-specific regulations, e.g. as

- Electronic waste,
- Batteries and rechargeable batteries,
- Plastics,
- Metals.

Engage a certified disposal company to handle scrapping as needed.

Information on servicing and maintenance of your device can be found in „17. Service and maintenance“ on page 62.

## 2. Safety

The chapter on Safety contains information which must be observed to ensure your personal safety and avoid material damage.

### 2.1 Display of warning notices and safety information

The warning notices shown below

- are found throughout all of the documentation,
- can be found on the devices themselves.
- indicate potential risks and hazards,
- underscore aspects of the information provided that clarifies or simplifies procedures.



The additional symbol on the device itself indicates an electrical danger that can result in serious injuries or death.



This general warning symbol draws attention to a possible risk of injury. Be certain to observe all of the information listed under this symbol in order to avoid possible injury or even death.

### 2.2 Hazard levels

Warning and safety information is marked by a warning symbol, and the hazard levels are shown as follows, depending on the degree of hazard:

#### DANGER

Warns of an imminent danger which, if not avoided, results in serious or fatal injury.

#### WARNING

Warns of a potentially hazardous situation which, if not avoided, could result in serious injury or death.

#### CAUTION

Warns of an immediately hazardous situation which, if not avoided, can result in minor or moderate injury.

#### ATTENTION

Warns of an immediately hazardous situation which, if not avoided, can result in material or environmental damage.

#### INFORMATION

Indicates procedures in which there is **no** hazard of personal injury or material damage.

### 2.3 Product safety

The device reflects current engineering practice and accepted safety standards, but hazards can nonetheless arise.

Observe the safety regulations and warning notices. If notices are disregarded, this can lead to personal injury and/or damage to the product.

Every type of tampering with or use of this device,

- which goes beyond the mechanical, electrical or other operating limits can lead to personal injury and/or damage to the product;
- constitutes “misuse” and/or “negligence” under the product’s warranty and thus voids the warranty for any possible resulting damage.

Read and understand the user manual and, if applicable, the usage information before installing, operating, maintaining and using the device.

Only operate the device when in perfect condition and in compliance with this user manual and the usage information that is included. Send defective devices back to the manufacturer in compliance with proper transport conditions.

Retain the user manual throughout the service life of the device and keep it at hand for consultation.

When using the device, also observe the legal and safety regulations for your system that are applicable for the respective use case.

## 2.4 Dangers when handling the device

When operating electric devices, it is unavoidable for certain parts of these devices to conduct hazardous voltage. Consequently, severe bodily injury or material damage can occur if they are not handled properly. Therefore, when handling our devices, always observe the following:

- do not exceed the limit values specified in the user manual and on the rating plate! This must also be observed during testing and commissioning!
- Take note of the safety and warning notices in all usage information that belongs to the device!

### WARNING

#### **Disregarding the connection conditions of the Janitza measurement devices or their components can lead to injuries and even death or to material damage!**

- Do not use Janitza measurement devices or components for critical switching, control or protection applications where the safety of persons and property depends on this function.
- Do not carry out switching operations with the Janitza measurement devices or components without prior inspection by your plant manager with specialist knowledge! In particular, the safety of persons, material assets and the applicable standards must be taken into account!

### WARNING

#### **Life-threatening danger due to electrical voltage if installed incorrectly!**

Incorrect connection or exposed cable ends can result in parts being live.

- **Check the wiring before switching on for the first time.**

### WARNING

#### **Risk of injury due to electrical voltage!**

Severe bodily injury or death can result! Therefore please abide by the following:

- Switch off your installation before commencing work! Secure it against being switched on! Check to be sure it is de-energized! Ground and short circuit! Cover or block off adjacent live parts!
- During operation and troubleshooting (especially for DIN rail devices), check your system for dangerous voltages and switch these off if necessary!
- Wear protective clothing and protective equipment in accordance with applicable guidelines when working on electrical systems!
- Before making connections to the device/the component, ground the device by means of the ground wire connection, if present.
- Do not touch bare or stripped leads that are energized! Equip stranded conductors with wire ferrules!
- Hazardous voltages can be present in all circuitry parts that are connected to the power supply.
- Protect wires, cables and devices with a suitable line circuit breaker/fuse!
- Never switch off, remove or tamper with safety devices!
- There can still be hazardous voltages present in the device or in the component even after it has been disconnected from the supply voltage (capacitor storage).
- Do not operate equipment with current transformer circuits when open.
- Only connect screw terminals with the same number of poles and design!
- Do not exceed the limit values specified in the user manual and on the rating plate! This must also be observed during testing and commissioning.
- Take note of the safety and warning notices in the documents that belong to the device!

## 2.5 Electrically qualified personnel

To avoid bodily injury and material damage, only electrically qualified personnel are permitted to work on the devices and their components, modules, assemblies, systems and current circuits who have knowledge of:

- The national and international accident prevention regulations.
- Safety technology standards.
- Installation, commissioning, operation, disconnection, grounding and marking of electrical equipment.
- The requirements concerning personal protective equipment.

Electrically qualified persons within the scope of the technical safety information of all usage information associated with the device and its components are persons who can furnish proof of qualification as an electrically skilled person.

### **WARNING**

#### **Warning against unauthorized manipulation or improper use of the device or its components!**

Opening, dismantling or unauthorized manipulation of the device and its components which goes beyond the mechanical, electrical or other operating limits indicated can lead to material damage or injury, up to and including death.

- Only electrically qualified personnel are permitted to work on the devices and their components, assemblies, systems and current circuits.
- Always use your device or component only in the manner described in the associated documentation.
- If there is discernible damage, send the device or the component back to the manufacturer!

## 2.6 Warranty in the event of damage

Any unauthorized tampering with or use of the device constitutes "misuse" and/or "negligence" under the product's warranty and thus voids the warranty for any possible resulting damage. In this regard, please take note of section „3.3 Intended use“ on page 15.

## 2.7 Safety information for handling current transformers and measurement devices with residual current measurement

### **WARNING**

#### **Risk of injury due to large currents and high electrical voltage on the current transformers!**

Current transformers operated while open on the secondary side (high voltage peaks pose a hazard when touched) can result in severe bodily injury or death.

- Avoid operating the current transformers while open; short circuit the unloaded transformers!
- Before interrupting the current supply, short circuit the secondary connections of the current transformers. Set the test switches that automatically short-circuit the secondary lines of the current transformers to the "Test" status (check test switch/short-circuiting device beforehand)!
- Only use current transformers with basic insulation in accordance with IEC 61010-1!
- Caution, even current transformers rated as safe for open operation can pose a hazard when touched during operation while open!
- Make sure to mount screw terminals for the current transformer connection on the meter and, if necessary, fasten them with the enclosed screws!
- Comply with the information and provisions in the documentation of your current transformers!

**⚠ CAUTION****Risk of injury or damage to the meter due to high measurement currents at the connections of the current transformers!**

High measurement currents can cause temperatures of up to 80 °C (176 °F) on the connections of the current transformers

- Use wiring that is designed for an operating temperature of at least 80 °C (176 °F)!
- The current transformers can be hot even after the power supply has been switched off. Allow the connections of the current transformers and the connecting cables to cool down before touching them!

**⚠ WARNING****Risk of injury or damage to the meter due to improper use!**

Meters with residual current measurement can trigger warning pulses if limit values are exceeded, and these are used exclusively for monitoring residual currents or failure monitoring. Use of the warning pulses as a stand-alone protective device against electrical shock can lead to injury and even death!

- Do not use devices with residual current measurement as a stand-alone protective device. Employ suitable protective devices for your system!

**⚠ CAUTION****Risk of injury or damage to the meter/your system due to short circuit!**

Inadequate insulation of the operating equipment at the residual current measurement input with respect to the supply circuits can cause voltages at the measurement input which represent a hazard when touched or damage to your device or system.

- Ensure reinforced or double insulation with respect to the supply circuits!
- Ensure galvanic isolation of the residual current measurement inputs from each other!

### 3. Product description

#### 3.1 Device description

The measurement device is a multifunctional network analyzer that:

- Is designed to measure the power quality in low-voltage systems.
- Measures and calculates electrical variables such as voltage, current, frequency, power, work, harmonics, etc. in building installations, on distribution boards, circuit breakers and busbar trunking systems.
- Records energy consumption for cost center analysis.
- Displays and saves measurement results and transmits them via Ethernet, e.g. to the building management system.

Measured voltages and currents must originate from the same network. For current measurement, external .. /5 A or .. /1 A current transformers (inductive current transformers) must be used.

Measurements in medium voltage networks are always carried out via current and voltage transformers!

#### 3.2 Incoming goods inspection

Safe and trouble-free operation of this device and its components presupposes proper transport, proper storage, set-up and assembly as well as operation and maintenance in addition to compliance with the safety information and warning notices.

Exercise due caution when unpacking and packing the device, do not use force and only use suitable tools.

Before installing the device, please check the following:

- Its flawless mechanical condition by visual inspection.
- The scope of delivery for completeness.

If it can be assumed that safe operation of the device is no longer possible:

- Disconnect the device from operation immediately!
- Secure the device against being switched on again!

It can be assumed that safe operation is no longer possible if the device, for example:

- Has visible damage.
- No longer functions despite an intact power supply.
- Was subjected to extended periods of unfavorable conditions (e.g. storage outside of the permissible climate thresholds without adjustment to the room climate, condensation, etc.) or transport stress (e.g. falling from an elevated position, even without visible external damage, etc.).

### 3.3 Intended use

The device is intended for the following uses:

- Use in residential and industrial areas
- Installation in weather-protected switchboard cabinets or small distribution boards
- Current measurement via external current transformers
- Measurement in 2, 3 and 4-conductor networks and TN, TT and IT networks

The device is **not** intended for:

- Operation outside the technical data range (measurement/operating voltage, overvoltage category, climatic conditions, power fuse, etc.)
- Installation in vehicles: Use of the device in non-stationary equipment constitutes an exceptional environmental condition and is only permissible by special agreement.
- Installation in environments with harmful oils, acids, gases, vapors, dusts, radiation, etc. or in potentially explosive atmospheres.

Safe and trouble-free operation of the device requires proper transport, storage, assembly, installation, operation and maintenance.

Furthermore, please note that Janitza measurement devices and components are **not** to be used for critical switching, control or protection applications (protective relays)! Observe the safety information and warnings in the "Safety" chapter!

### 3.4 Performance characteristics

#### General

- Front panel installation device with dimensions of 96 x 96 mm (3.78 x 3.78 in).
- Installation depth: 45 mm (1.77 in)
- Connection via screw terminals
- Supply voltage:  
Option 230 V: 90 .. 277 V (50/60 Hz) or  
DC 90 .. 250 V; 300 V CAT III
- Option 24 V: 24 .. 90 V AC/DC; 150 V CAT III
- 3 voltage measurement inputs (300 V, CAT III)
- 3 current measurement inputs (via inductive ..5 A or ..1 A current transformers)
- Storage of minimum and maximum values (without time stamp)
- Frequency range: 45 .. 65 Hz

#### Measurement

- Measurement in TN, TT and IT networks
- Measurement in networks with nominal voltages up to L-L 480 V or L-N 277 V.
- Measuring range, current 0.005 .. 6 Arms
- True effective value measurement (TRMS)
- Continuous sampling of the voltage and current measurement inputs
- Harmonics: Measurement of the 1st to 40th harmonics for  $U_{LN}$  and  $I$
- Energy meter for 7 tariffs and total quantity:  
Active energy (consumption)  
Active energy (delivered)  
Active energy (without backstop)  
Reactive energy (inductive)  
Reactive energy (capacitive)  
Reactive energy (without backstop)  
Apparent energy  
each for L1, L2, L3 and sum of L1..L3

#### Measurement uncertainty

- Active energy:  
Class 0.5/0.5S with ..5 A current transformers  
Class 1/1S with ..1 A current transformers
- Reactive energy class 2
- Measuring accuracy 0.2% (voltage, current)

### 3.5 Conformity declaration

The laws, standards and directives applied by Janitza electronics GmbH for the devices can be found in the declarations of conformity at [www.janitza.com](http://www.janitza.com).

### 3.6 FCC Declaration of Conformity

The device:



- complies with Part 15 of the FCC Rules for Class B digital devices (limits to protect against harmful interference in a residential installation).
- generates, uses and can radiate high-frequency energy
- can cause harmful interference to radio communications if not installed and used properly. There is no guarantee that interference will not occur in a particular installation.

If there is radio or television reception interference, which can be determined by turning the device on and off, proceed as follows:

- Align or reposition the receiving antenna.
- Increase the distance between the device and the radio/television receiver.
- Connect the device and the radio/television receiver in different circuits.
- if necessary, contact Janitza support or a radio/television technician.

Code of Federal Regulations, Title 47, Part 15, Sub-part B - Unintentional Radiators.

### 3.7 Scope of delivery

| Quan-<br>tity | Part. no.             | Designation                                                                 |
|---------------|-----------------------|-----------------------------------------------------------------------------|
| 1             | 5235xxx <sup>1)</sup> | UMG 96-EL                                                                   |
| 1             | 3303908               | Installation manual                                                         |
| 1             | 3303342               | "Safety Information" supplement                                             |
| 1             | 5235250               | UMG 96-EL accessory pack<br>(plug-in screw terminals and housing terminals) |

1) For part number see delivery note  
*Tab. Scope of delivery*

### 3.8 Accessories

| Quan-<br>tity | Part. no. | Designation            |
|---------------|-----------|------------------------|
| 1             | 5222251   | Mounting clip set      |
| 1             | 2901065   | Silicone seal, 96 x 96 |

#### INFORMATION

All supplied options and design variants are described on the delivery note.

### 3.9 Measuring method

The device measures

- Continuously and calculates all effective values using in a 200 ms interval.
- The true RMS value (TRMS) of the voltages and currents applied to the measurement inputs.

### 3.10 Transformers

Use only "Current transformers for measuring purposes" for Janitza measurement devices and components!

"Protection transformers" must not be used!

### 3.11 Operating concept

The operating concept of the measurement device incorporates the following methods:

- 2 function buttons with display for configuring the device.
- The GridVis network analysis and programming software for programming and analysis of data.
- The Modbus protocol and the Modbus address list to configure and read out data. The Modbus address list is available in the download area at [www.janitza.com](http://www.janitza.com).

This user manual describes how to operate the measurement device using the 2 function buttons and how to use the Modbus editor.

### 3.12 GridVis network analysis software

The GridVis software (download at [www.janitza.com](http://www.janitza.com)) is the perfect tool for configuring, reading and analyzing measurement data.

#### GridVis software performance characteristics

- Configure and read out data from your measurement device.
- Graphic display of measured values.
- Store measurement data in databases.
- Analyze measurement data that has been read out.
- Create reports.

#### Connections to the PC (GridVis software)

Connections for communication between the PC and the measurement device can be found in section „8. Connection and PC connections“ on page 32.

## 4. Structure of the device

### 4.1 Front panel - Display and controls

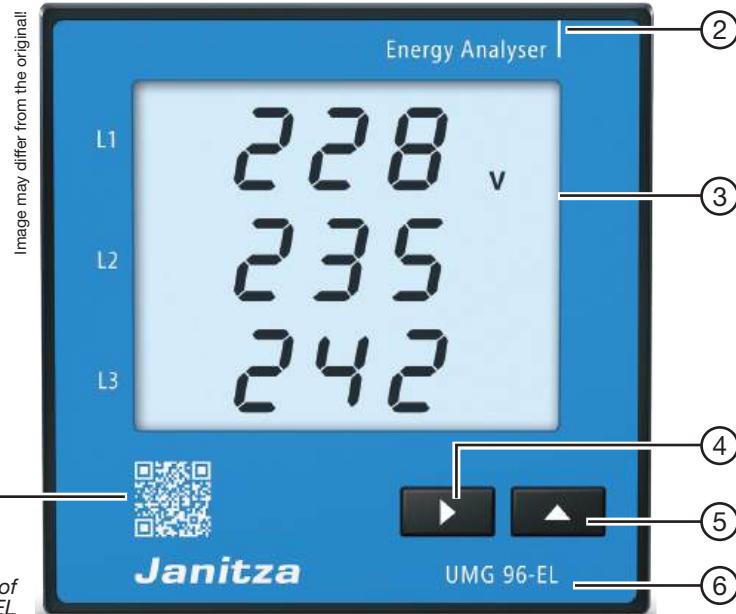
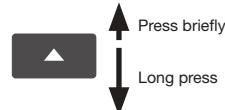




Fig. Front view of  
UMG 96-EL

| Item | Function/Designation                                                                                                                            |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | QR code (link to the website of the device)                                                                                                     |
| 2    | Device type                                                                                                                                     |
| 3    | Display                                                                                                                                         |
| 4    | Button 1: "►"<br>- Forward: press briefly<br>- Backward: long press<br>- In programming mode:<br>Confirm selection: press briefly               |
| 5    | Button 2: "▲"<br>- Upward: press briefly<br>- Downward: long press<br>- In programming mode:<br>Value +1: press briefly<br>Value -1: long press |
| 6    | Device designation                                                                                                                              |

Tab. Front view - display and controls



#### 4.2 Rear of the device - Connections

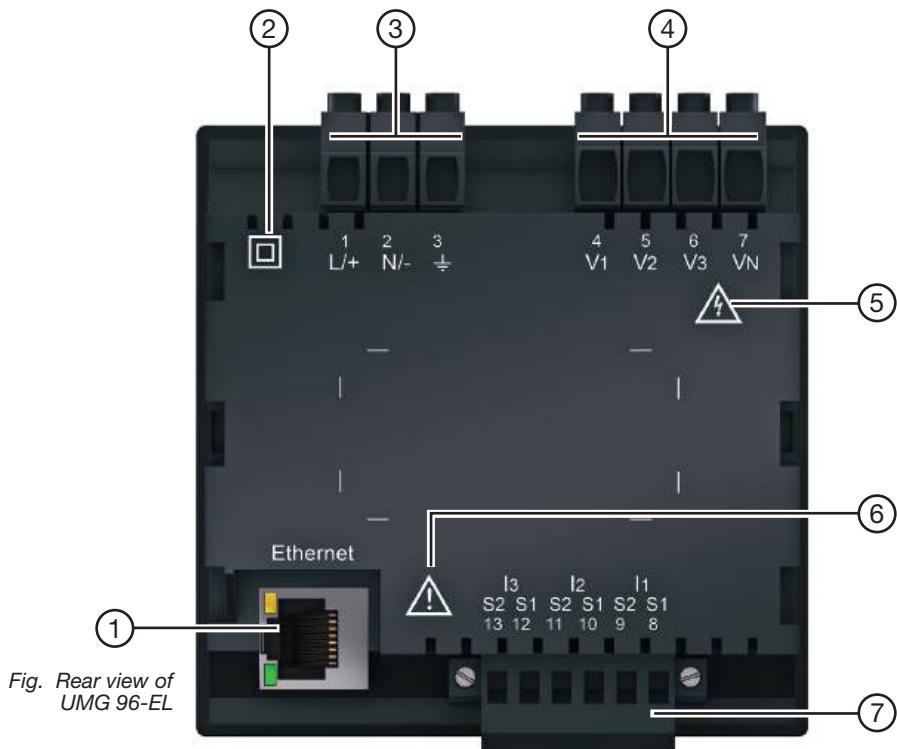
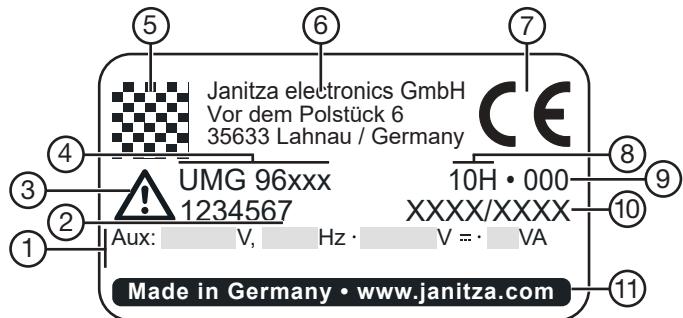




Fig. Rear view of  
UMG 96-EL

| Item | Function/Designation                                                                                            |
|------|-----------------------------------------------------------------------------------------------------------------|
| 1    | Ethernet port RJ45                                                                                              |
| 2    | Symbol, protection class II (reinforced or double insulation)<br>according to IEC 60536 (VDE 0106, Part 1)      |
| 3    | Connection of supply voltage and functional earth                                                               |
| 4    | Voltage measurement inputs V <sub>1</sub> to V <sub>3</sub> and V <sub>N</sub>                                  |
| 5    | Warning symbol indicating an electrical hazard.<br>Observe the warnings to avoid possible injury or even death. |
| 6    | General warning symbol.<br>Observe the warnings to avoid possible injury or even death.                         |
| 7    | Current measurement inputs I <sub>1</sub> to I <sub>3</sub>                                                     |

Tab. Rear of the device - Connections

#### 4.3 Rating plate



| Item | Designation                       | Description                                                                                                                                                                                               |
|------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Operational data                  | <ul style="list-style-type: none"> <li>Supply voltage, AC in V</li> <li>Nominal frequency in Hz</li> <li>Supply voltage, DC in V</li> <li>Power consumption in VA</li> <li>Oversupply category</li> </ul> |
| 2    | Part number                       | Manufacturer's part number                                                                                                                                                                                |
| 3    | Symbol for "Danger sign"          | General hazard symbol.<br>Be certain to observe the warning notices applied to the device and shown in the documentation in order to avoid possible injury or even death.                                 |
| 4    | Device type                       | Device designation                                                                                                                                                                                        |
| 5    | Data matrix code                  | Coded manufacturer data                                                                                                                                                                                   |
| 6    | Manufacturer                      | Address of the device manufacturer                                                                                                                                                                        |
| 7    | CE conformity marking             | See section „3.5 Conformity declaration“ on page 16.                                                                                                                                                      |
| 8    | Manufacturer-specific data        | Manufacturer data                                                                                                                                                                                         |
| 9    | Hardware version                  | Hardware version of your device                                                                                                                                                                           |
| 10   | Type/serial number                | Number for identification of the device                                                                                                                                                                   |
| 11   | Designation of origin/web address | Country of origin and manufacturer's web address                                                                                                                                                          |

Tab. Rating plate

## 5. Mounting

### 5.1 Installation location

#### **DANGER**

##### **Danger of electric shock!**

Electric shocks lead to serious injuries, including death.

- Disconnect your system from the power supply before mounting and connecting the device!
- Secure it against being switched on!
- Check to be sure it is de-energized!
- Ground and short circuit!
- Cover or block off adjacent live parts!
- The installation must only be carried out by qualified personnel with electrical training!

The measurement device is suitable for installation in stationary and weather-protected indoor switchboards. Ground conductive switchboards!

#### **ATTENTION**

##### **Material damage due to disregard of the installation instructions!**

Disregard of the installation instructions can damage or destroy the device.

- **Observe the information on the mounting orientation in the sections "Mounting" and "Technical Data".**
- **Provide adequate air circulation in your installation environment and, as needed, cooling when the temperatures are high!**

### 5.2 Mounting orientation

The mounting orientation is arbitrary. The break-out dimensions in the switchboard are  $92^{+0.8}$  mm x  $92^{+0.8}$  mm ( $3.62^{+0.03}$  x  $3.62^{+0.03}$  in).

Minimum clearances for adequate ventilation:

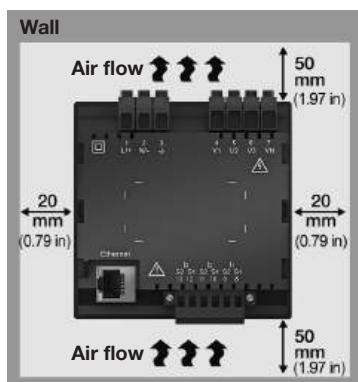
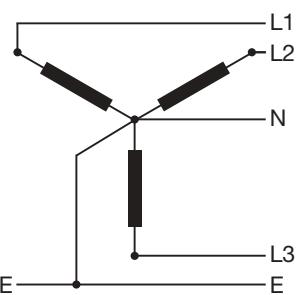
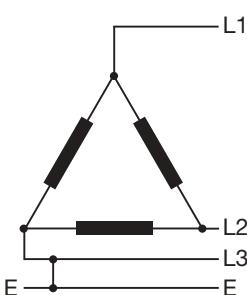
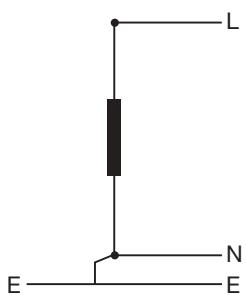


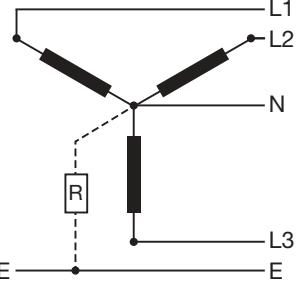
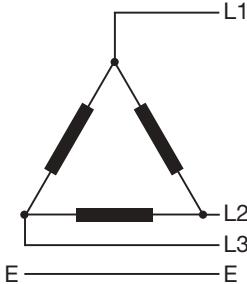
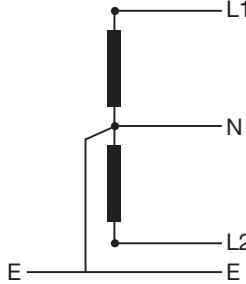

Fig. Mounting orientation of the meter (rear view)

### 5.3 Securing

Secure the device inside the switchboard (mounting plate) with the fastening clips on the side. To do so, proceed as follows:

- Remove the mounting clips on the device, e.g. by levering with a screwdriver.





Fig. Side view of the measurement device with fastening clip.

- Insert the device from the front into the recess ( $92^{+0.8}$  mm x  $92^{+0.8}$  mm) in the switchboard.
- Slide the mounting clips onto the grid provided until the device audibly clicks into place and is firmly seated in the switchboard.

## 6. Grid systems

Grid systems and maximum rated voltages according to DIN EN 61010-1/A1:

| Three-phase 4-conductor systems<br>with grounded neutral conductor (TN/TT)                                                                                                  | Three-phase 3-conductor systems<br>with grounded phase (TN/TT)                                                                    | Single-phase 2-conductor systems<br>with grounded neutral conductor (TN/TT)                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
|  <p>IEC<br/>UL <math>U_{L-N} / U_{L-L}: 277 \text{ V}_{LN} / 480 \text{ V}_{LL}</math></p> |  <p><math>U_{L-L}: 480 \text{ V}_{LL}</math></p> |  <p><math>U_{L-N}: 230 \text{ V}_{LN}</math></p> |

| Three-phase 4-conductor systems<br>with non-grounded neutral conductor (IT)                                                                                                  | Three-phase 3-conductor systems<br>non-grounded (IT)                                                                               | Split single-phase 3-conductor system<br>with grounded neutral conductor (TN/TT)                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  <p>IEC<br/>UL <math>U_{L-N} / U_{L-L}: 277 \text{ V}_{LN} / 480 \text{ V}_{LL}</math></p> |  <p><math>U_{L-L}: 480 \text{ V}_{LL}</math></p> |  <p><math>U_{L-N} / U_{L-L}: 240 \text{ V}_{LN} / 480 \text{ V}_{LL}</math></p> |



### WARNING

#### Risk of injury due to electrical voltage!

Rated surge voltages above the permitted over-voltage category can damage the insulation in the device. This impairs the safety of the device. This can result in serious injury or death.

- Only use the device in environments which comply with the permissible rated surge voltage.
- Observe the limit values specified in the user manual and on the rating plate.

The measurement device can be used:

- in 2, 3 and 4-conductor networks (TN, TT and IT networks)
- in residential and industrial areas.

## 7. Installation

Use the measurement device for voltage measurement in TN, TT or IT grid systems with the approved overvoltage category of 300 V CAT III.

### ⚠️ WARNING

**Disregard of the connection conditions of the transformers to Janitza measurement devices or their components can lead to injuries or even death or to material damage!**

- Do not use the outputs of the Janitza measurement devices or their components for switching protective devices or protective relays! Do not use "transformers for protection purposes"!
- For Janitza measurement devices and their components use only "Transformers for measurement purposes" which are suitable for the energy monitoring of your system.
- Observe the information, regulations and limit values in the usage information on "Transformers for measuring purposes", including during testing and commissioning of the Janitza measurement device, the Janitza component and your system.

### ⚠️ CAUTION

**Malfunction and damage of the device or risk of injury due to improper connection.**

Improperly connected devices can deliver incorrect measured values, damage the device or pose a risk of injury to persons.

**Observe the following:**

- Measured voltages and currents must originate from the same network.
- Do not use the measurement device for measuring direct current!
- Ground current-conducting switchboards!

### 7.1 Nominal voltages

#### 7.1.1 Three-phase four-conductor network with grounded neutral conductor

Networks and nominal voltages suitable for your measurement device:

| U <sub>L-N</sub> / U <sub>L-L</sub> |
|-------------------------------------|
| 66 V / 115 V                        |
| 120 V / 208 V                       |
| 127 V / 220 V                       |
| 220 V / 380 V                       |
| 230 V / 400 V                       |
| 240 V / 415 V                       |
| 260 V / 440 V                       |
| 277 V / 480 V                       |

Maximum nominal voltage of the network according to IEC and UL

Fig. Nominal network voltages suitable for measurement inputs according to EN 60664-1 (valid in three-phase 4-conductor systems with grounded neutral conductor - see section "Grid systems").

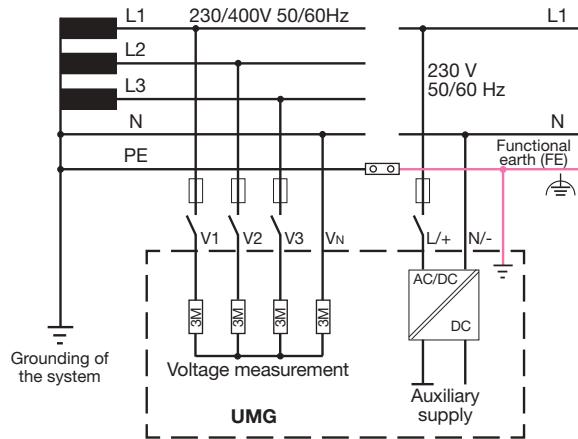



Fig. Example, schematic diagram (UMG 96-EL) - Measurement in three-phase 4-conductor systems.

### 7.1.2 Three-phase three-conductor system

Networks and nominal voltages suitable for your device:

| U <sub>L-L</sub> |
|------------------|
| 100 V            |
| 120 V            |
| 200 V            |
| 240 V            |
| 347 V            |
| 380 V            |
| 400 V            |
| 415 V            |
| 440 V            |
| 480 V            |

Maximum nominal voltage of the network according to IEC and UL

*Fig. Nominal network voltages suitable for measurement inputs according to EN 60664-1 (valid in three-phase 3-conductor systems - see section "Grid systems").*

### 7.2 Circuit breaker

Install a suitable circuit breaker for the supply voltage in the building installation in order to disconnect the device from voltage and current.

- Install the circuit breaker near the device and within reach of the user.
- Mark the circuit breaker as the isolation device for this piece of equipment.

### 7.3 Supply voltage

#### ⚠ WARNING

##### Risk of injury due to electrical voltage!

Severe bodily injury or death can result from:

- Touching bare or stripped leads that are energized.

- Device inputs that pose a hazard when touched.

- **Disconnect your system from the power supply before mounting and connecting the device!**

- **Secure it against being switched on!**

- **Check to be sure it is de-energized!**

- **Ground and short circuit!**

- **Cover or block off adjacent live parts!**

Operation of the device requires a supply voltage.

The type and level of the supply voltage for your device can be found on the rating plate. Also note:

- Before applying the supply voltage, ensure that the voltage and frequency match the specifications on the rating plate.
- Connect the supply voltage via a UL/IEC approved fuse to the plug-in terminals on the rear of the device.
- After connecting the supply voltage, the display appears.

#### ⓘ INFORMATION

Note that the device requires an initialization phase (boot time) at startup!

If no display appears, check:

- The connection of your device.
- The supply voltage.

## ⚠ CAUTION

### Material damage due to disregard of the connection instructions!

Disregard of the connection instructions can damage or destroy your device.

### Therefore please abide by the following:

- Observe the voltage and frequency specifications on the rating plate!
- Connect the supply voltage via a fuse according to the technical data!
- Do not tap the supply voltage from the voltage transformers!
- Provide a fuse for the neutral conductor if the neutral conductor terminal of the source is not grounded!

The supply voltage must be connected via an overcurrent protective device (fuse) in accordance with the technical data.

Recommendation for the overcurrent protective device of the supply voltage line protection (dependent on the device variants):

- Option 230 V --> 6 - 16 A (Char. B)
- Option 24 V --> 1 - 6 A (Char. B)

## ⓘ INFORMATION

The fuse is a line protection, **not** a device protection!

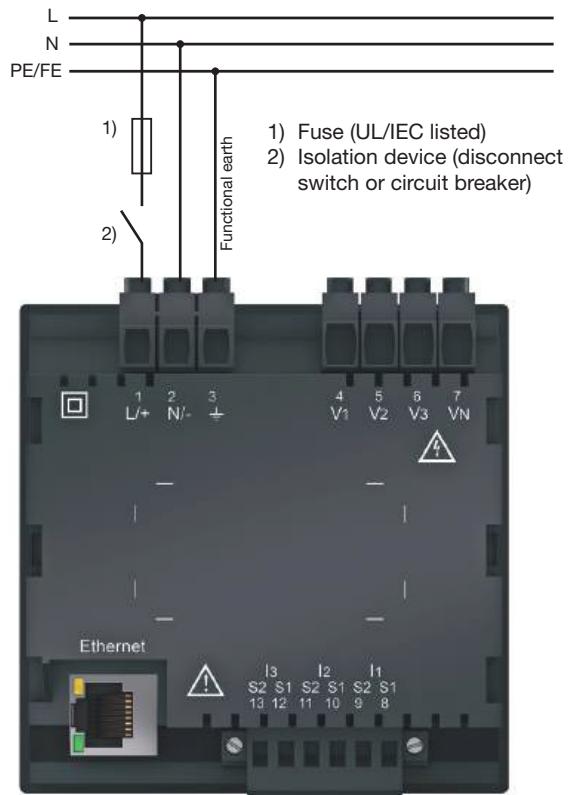



Fig. "Supply voltage" connection example

## ⓘ INFORMATION

Without a functional earth, the device indicates a residual voltage that is not applied.

## 7.4 Voltage measurement

There are 3 voltage measurement inputs (V1 to V3) on the rear of the device.

### ⚠ WARNING

#### Risk of injury due to electrical voltage!

Serious bodily injury or death can result from failure to observe the connection conditions for the voltage measurement inputs.

#### Therefore please abide by the following:

- Switch off your installation before commencing work! Check to be sure it is de-energized!
- Connect voltages above the permitted nominal network voltages via voltage transformers.
- The voltage measurement inputs on the device are dangerous to touch!
- Install a circuit breaker (see section Sect. 7.2 on page 24).
- Use a UL/IEC approved overcurrent protective device with a nominal value rated for the short circuit current at the connection point.

### ⓘ INFORMATION

- The device only determines measured values if a voltage L1-N of greater than 20 V<sub>rms</sub> (4-conductor measurement) or a voltage L1-L2 of greater than 34 V<sub>rms</sub> (3-conductor measurement) is applied to voltage measurement input V1. If the voltage at V1 is too low, the error "EEE 500" is displayed.
- Use a line protection (1-10 A) with IEC/UL approval as an overcurrent protective device for voltage measurement.

## 7.4.1 Voltage transformers

If the nominal network voltage exceeds the measuring range, use voltage transformers and configure the device's transformer ratio accordingly.

The following applies when using voltage transformers:

### ⚠ WARNING

#### Risk of injury due to electrical voltage!

Do not short-circuit secondary connections of voltage transformers! This can result in serious injury or death.

- Connect voltage transformers according to their documentation!
- Check your installation!
- Before switching on, you must set the voltage transformer ratio in the measurement device!

The device only allows the setting of **one voltage transformer ratio for all phases!**

### ⓘ INFORMATION

**The voltage transformer ratios** can be conveniently configured via:

- The device menu.
- Via the GridVis software.

For information on voltage transformer configuration, see section „10.5 Setting the voltage transformer (VT)“ on page 39.

For more information, see section „15.1 Overrange measurements“ on page 59.

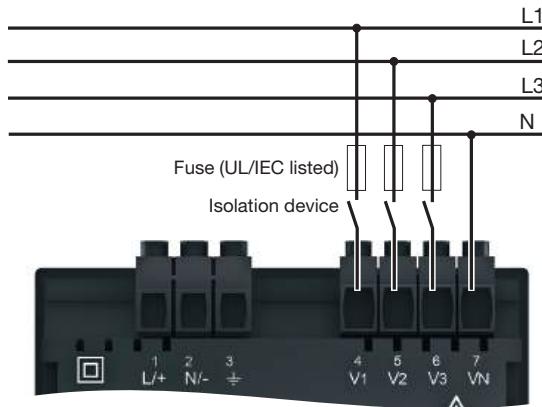
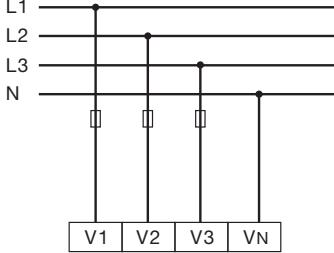
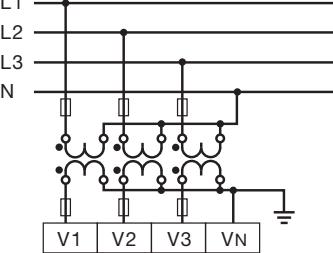
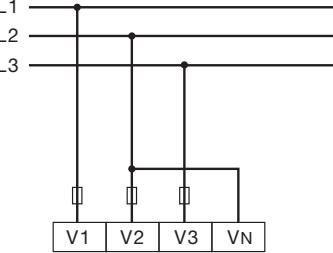
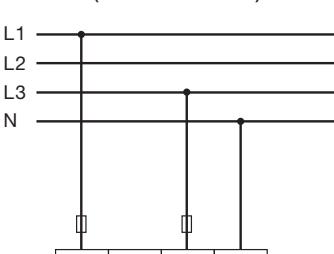
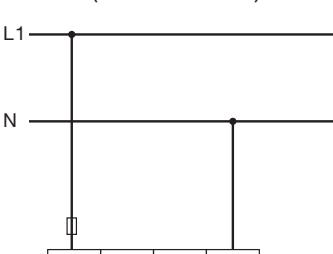
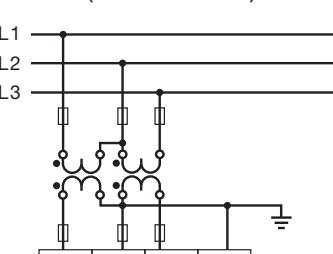
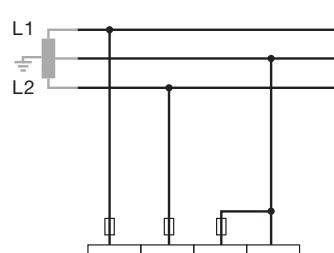
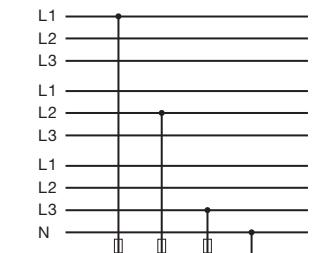











Fig. Voltage measurement connection variant 3p 4w  
(addr. 509 = 0, factory setting)

## 7.4.2 Overvoltage

The voltage measurement inputs are suitable for measurement in networks where overvoltages of category 300 V CAT III (rated surge voltage 4 kV) can occur.

### 7.4.3 Connection variants for voltage measurement

|                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <p><b>3p 4w</b><br/>(addr. 509 = 0, factory setting)</p>  <p>Measurement with 3 phase conductors and neutral conductor.</p>                                                                   | <p><b>3p 4wu</b><br/>(addr. 509 = 1)</p>  <p>Measurement via voltage transformer with 3 phase conductors and neutral conductor.</p>                                                                             | <p><b>3p 4u</b><br/>(addr. 509 = 2)</p>  <p>Measurement with 3 phase conductors without neutral conductor. Measured values that require an N use a calculated N.</p>                          |
| <p><b>2p 4w</b><br/>(addr. 509 = 3)</p>  <p>System with equal loading of the phases. Measured values of voltage measurement input V2 are calculated.</p>                                     | <p><b>1p 2w1</b><br/>(addr. 509 = 4)</p>  <p>Measured values derived from voltage measurement inputs V2 and V3 are assumed to be 0 and are not calculated.</p>                                                 | <p><b>3p 2u</b><br/>(addr. 509 = 5)</p>  <p>Measurement via voltage transformer with 3 phase conductors without neutral conductor. Measured values that require an N use a calculated N.</p> |
| <p><b>1p 2w</b><br/>(addr. 509 = 6)</p>  <p>Single-phase three-conductor network: Measured values derived from voltage measurement input V3 are assumed to be 0 and are not calculated.</p> | <p><b>3p 1w</b><br/>(addr. 509 = 7)</p>  <p>3 systems with equal loading of the phases. Per system, the power and energy of a phase are multiplied by 3. One of the neutral conductors must be connected.</p> | <p><b>Recommendation for all variants:</b><br/>Short-circuit unused voltage measurement inputs with input VN.</p>                                                                                                                                                                |



#### CAUTION

##### Malfunction due to improper connection.

Improper connection of the device can result in incorrect measured values.

- Measured voltages and currents must originate from the same network.
- The device is not suitable for measuring DC voltage.

### Connection variant "Voltage measurement with functional earthing (FE)"

For a measurement in a grounded 3-phase system without N, connect the PE as a functional earth (FE) to the voltage measurement input  $V_N$  of the device. Make sure to use the color "pink" (DIN EN 60445/ VDE 0197) for the functional earth conductor and to observe the limits for the voltage measurement.

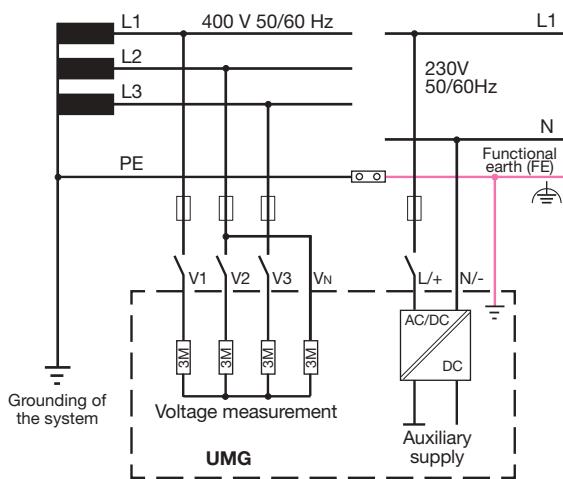



Fig. Connection variant - Voltage measurement in a grounded 3-phase system.

**Do not use the protective earthing present in your system as functional a earthing!**

### 7.4.4 Frequency

The device:

- Requires the mains frequency for the measurement and calculation of measured values.
- Is suitable for measurement in networks in which the fundamental oscillation of the voltage is in the range from 45 Hz to 65 Hz.
- Determines the frequency automatically (factory setting).

The mains frequency is determined from the measured voltage of phase L1. The sampling frequency of the voltage and current measurement inputs results from the mains frequency.

When measuring with strongly distorted voltages, the frequency of the voltage fundamental oscillation can no longer be determined exactly. This means that for strongly distorted measured voltages, the corresponding mains frequency should have a fixed specification. Voltage distortions occur, for example, during measurements on consumers that are operated with phase-angle control. Distortions of the current do not influence the frequency determination.

You can find information on how to set a fixed frequency in the chapter „11.2 Mains frequency (addr. 034)“ on page 43.

## 7.5 Current measurement

The device:

- Is designed for the connection of current transformers with secondary currents of ..1 A and ..5 A.
- Is only approved for current measurement via current transformers.
- Does not measure DC currents.

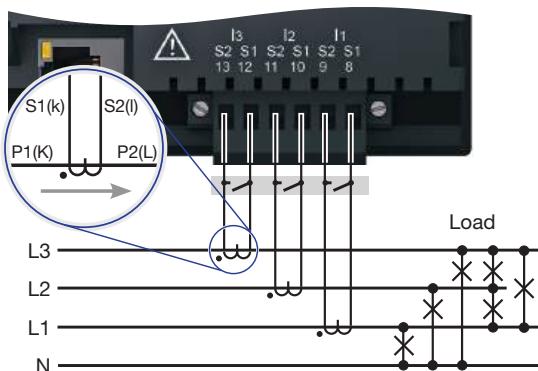



Fig. Connection "Current measurement via current transformer"

The factory-set current transformer ratio is 5/5 A and must be adapted to the current transformers used before the first current measurement.

### **INFORMATION**

The device only allows the setting of **one current transformer ratio for all phases!**

You can configure current transformer ratios conveniently via

- The device menu.
- Via the GridVis software.

For information on current transformer configuration, see section „10.4 Setting the current transformer (CT)“ on page 38.

### **WARNING**

#### **Risk of injury due to electrical voltage at current transformers!**

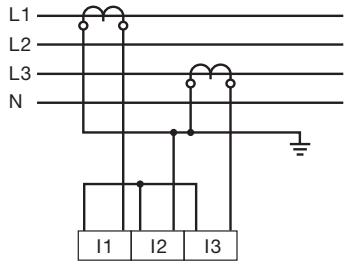
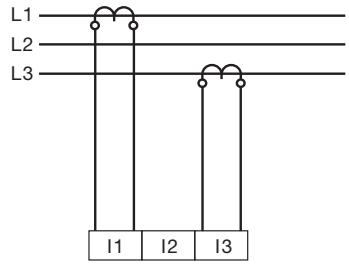
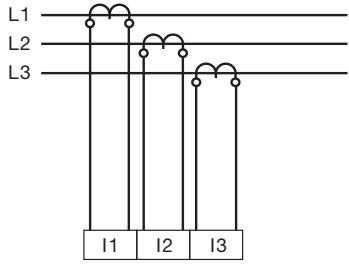
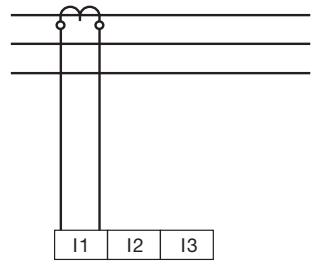
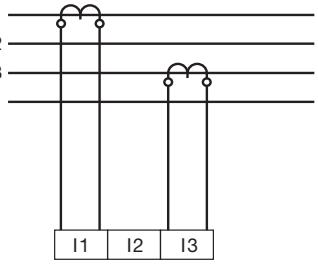
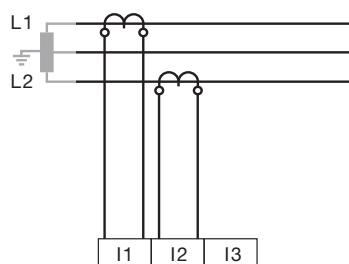
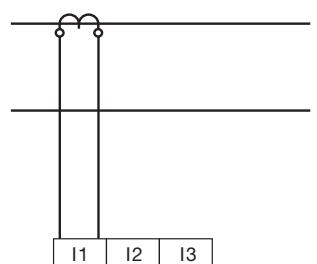
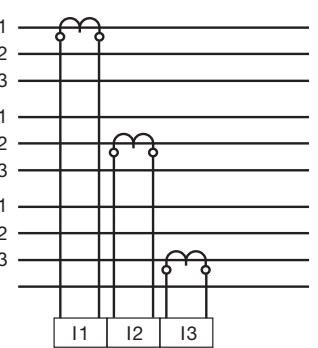
Current transformers which are operated exposed on the secondary side can carry hazardous live high voltage peaks which can lead to serious bodily injury or death.

#### **Therefore please abide by the following:**

- Switch off your installation before commencing work! Check to be sure it is de-energized!
- Avoid exposed operation of the current transformers.
- Short circuit unloaded current transformers.
- Before interrupting the supply of power, it is essential to short the secondary connections of the current transformers.
- If there is a test switch which automatically short-circuits the secondary current transformer lines, it is sufficient to set it to the "Test" position, provided that the short-circuitors have been checked beforehand.
- Only use current transformers that have basic insulation in accordance with IEC 61010-1.
- Make sure to mount the screw terminals for the current transformer connection, which are included in the scope of delivery, on the meter and fasten them with the enclosed screws!
- Even current transformers rated as safe for exposed operation are dangerous to touch if they are operated exposed.
- Observe the documentation for the current transformers!

### **WARNING**

#### **Risk of injury due to electrical voltage!**









Severe bodily injury or death can result from:

- Touching bare or stripped leads that are energized.
- Device inputs that pose a hazard when touched.

**Disconnect your system from the power supply before starting work! Check to be sure there is no voltage! Ground the system!**

**Use the ground connection points with the ground symbol to do so!**

### 7.5.1 Connection variants for current measurement

|                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <p><b>3p 4w</b><br/>(addr. 510 = 0, factory setting)</p>  <p>Measurement with 3 phase conductors and neutral conductor.</p>                                                                       | <p><b>3p 2i</b><br/>(addr. 510 = 1)</p>  <p>System with equal loading of the phases. Measured values of current measurement input I2 are measured.</p>               | <p><b>3p 2i0</b><br/>(addr. 510 = 2)</p>  <p>Measurement in three-phase 3-conductor system. Measured values for current I2 are calculated (Aron circuit).</p>  |
| <p><b>3p 3w3</b><br/>(addr. 510 = 3)</p>  <p>Measurement in three-phase 3-conductor system with unequal load.</p>                                                                                | <p><b>3p 3w</b><br/>(addr. 510 = 4)</p>  <p>Measurement in a three-phase 3-conductor system with a balanced load. Measured values for I2 and I3 are calculated.</p> | <p><b>2p 4w</b><br/>(addr. 510 = 5)</p>  <p>System with equal loading of the phases. Measured values for I2 are calculated.</p>                               |
| <p><b>1p 2i</b><br/>(addr. 510 = 6)</p>  <p>Single-phase three-conductor network: Measured values derived from the current measurement input I3 are assumed to be 0 and are not calculated.</p> | <p><b>1p 2w</b><br/>(addr. 510 = 7)</p>  <p>Measured values derived from current measurement inputs I2 and I3 are assumed to be 0 and are not calculated.</p>      | <p><b>3p 1w</b><br/>(addr. 510 = 8)</p>  <p>3 systems with equal loading of the phases. Per system, the power and energy of a phase are multiplied by 3.</p> |



### WARNING

#### Risk of injury or damage to the meter due to high measurement currents at the connections of the current transformers!

High measurement currents can cause temperatures of up to 80 °C (176 °F) on the connections of the current transformers.

- Use wiring that is designed for an operating temperature of at least 80 °C (176 °F)!
- The current transformers can be hot even after the power supply has been switched off. Allow the connections of the current transformers and the connecting cables to cool down before touching them!

#### Grounding of current transformers

If a connection is provided for grounding the secondary winding, this must be connected to ground.

#### Overrange

If the measuring range is exceeded, the device display shows "EEE" with an indication of the current or voltage circuit.

For more information, see section „15.1 Overrange measurements“ on page 59.

#### 7.5.2 Current direction

You can correct the current direction for each phase individually in the device configurator of the GridVis software. This means that in the case of incorrect connection, no subsequent reconnection of the current transformers is necessary.

#### 7.5.3 Summation current measurement

For a summation current measurement via two current transformers, first set their total ratio on the device.

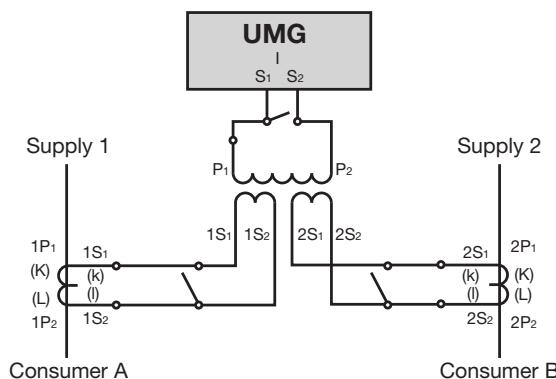



Fig. Example for current measurement via a summation current transformer

#### Example:

The current is measured via two current transformers. Both current transformers have a ratio of 1000/5 A. The summation measurement is carried out with a summation current transformer of 5+5/5 A.

The device must then be adjusted as follows:

Primary current: 1000 A + 1000 A = 2000 A  
Secondary current: 5 A

#### 7.5.4 Ammeter

If you want to measure the current not only with the UMG, but also with an ammeter, connect the ammeter to the UMG in series.

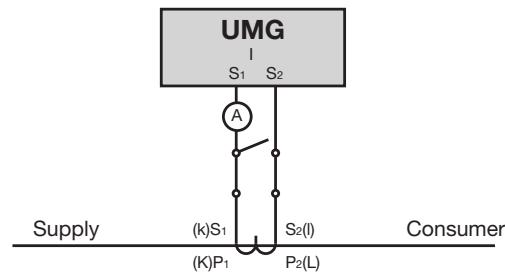



Fig. Circuit diagram with additional ammeter connected in series

## 8. Connection and PC connections

### 8.1 Ethernet port

You can use the Ethernet interface to connect the device directly to a PC (e.g. for device configuration via the GridVis PC software) or to a network.

#### CAUTION

##### Material damage due to incorrect network settings.

Incorrect network settings can cause faults in the IT network.

**Ask your network administrator about the correct network settings for your device.**

#### ATTENTION

##### Material damage due to security vulnerabilities in programs, IT networks and protocols.

Security vulnerabilities can lead to data misuse and faults and even the standstill of your IT infrastructure.

To protect your IT system, network, data communications and measurement devices:

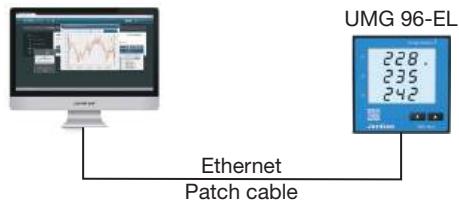
- Inform your network administrator and/or IT representative.
- Always keep the meter firmware up to date and protect the communication to the meter with an external firewall. Close unused ports.
- Take protective measures against viruses and cyber attacks from the Internet, e.g. through firewall solutions, security updates and virus protection programs.
- Eliminate security vulnerabilities and update or renew existing protection for your IT infrastructure.



Fig. Ethernet interface on the back of the device

#### Meaning of the LEDs

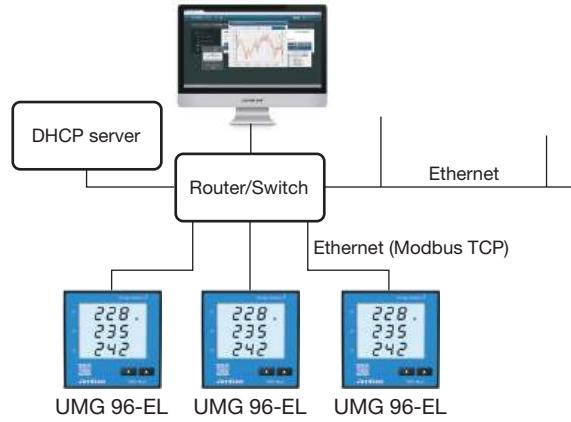
| LED    | Function                                         |
|--------|--------------------------------------------------|
| Green  | Is illuminated when there is a connection (link) |
| Yellow | Blinks during network activity                   |


- Use at least CAT5 cable!
- Make the network settings for the device in accordance with the network administrator's specifications. If the network settings are not known, the device must not be integrated into the network.
- The factory setting is DHCP (dynamic assignment of the IP address), see section „10.7 Dynamic or static IP address“ on page 40.
- The device supports IPv4.

### 8.2 Connection variants

There are various connection options:

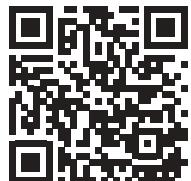
#### 1. Direct connection:


PC with GridVis



The device requires a fixed IP address, or the PC's network connection must be configured so that the device is assigned an IP address via DHCP.

#### 2. Connection to a router or switch:


PC/Server with GridVis



The DHCP server automatically assigns an IP address to the device, which can be shown on the display (see section „10. Configuration“ on page 37).

### 8.3 GridVis Quick Guide

Explains how to create a new project in the GridVis software after connecting the PC, and how to add and configure the device:



[wiki.janitza.com/x/jlgCQ](http://wiki.janitza.com/x/jlgCQ)

### 8.4 Ports used

When setting the firewall, please note that the measurement device uses the following ports:

| Port | Meaning                                                                                 |
|------|-----------------------------------------------------------------------------------------|
| 502  | <b>Modbus</b><br>Standard: automatic switching between typical displays                 |
| 1111 | <b>Identity Port</b><br>Janitza's own discovery service to find devices on the network. |

## 9. Operation and button functions

### 9.1 Operation

The device displays measured values and programming data on a liquid crystal display (LCD).

Buttons 1 and 2 are used for operation with the following distinctions:

- Press button 1 or 2 briefly:  
Next step (+1).
- Long press on button 1 or 2:  
Previous step (-1)

The device distinguishes between the *Display mode* and the *Programming mode*.

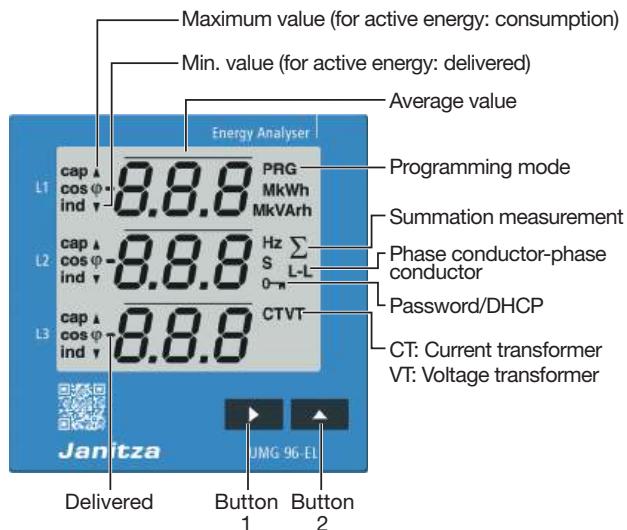



Fig. Display UMG 96-EL

#### Display mode

- Use button 1 and button 2 to scroll between the measuring displays.
- The measuring display shows up to 3 measured values.
- In the GridVis software, a time can be configured for automatically changing the display between the measuring displays.

#### Changing the mode

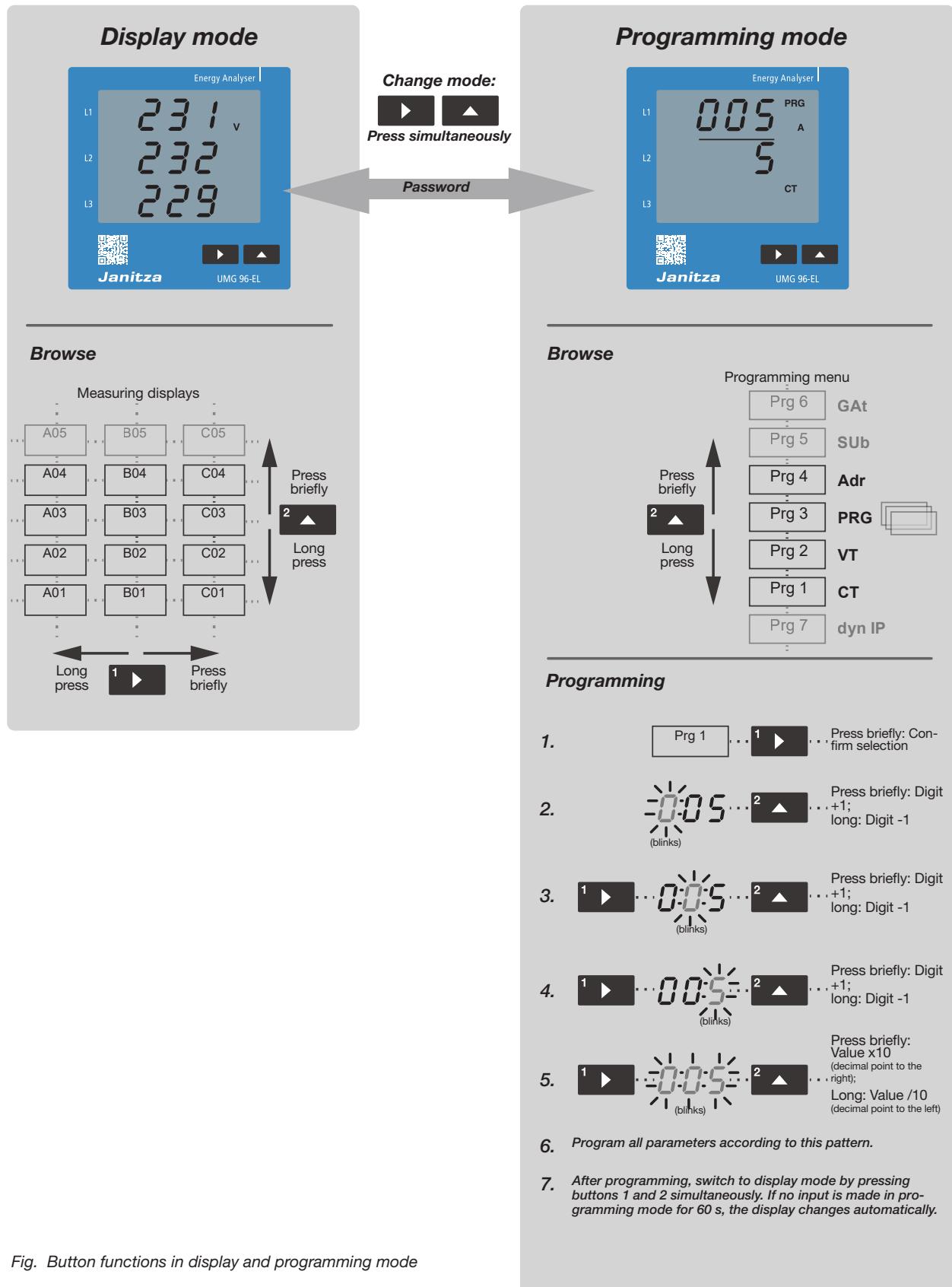
- Press and hold buttons 1 and 2 simultaneously for approx. 1 second to switch between the **display mode** and **programming mode**.
- The text **PRG** appears on the display while the programming mode is active.

The device switches from **programming mode** back to **display mode** when

- You press and hold buttons 1 and 2 simultaneously for approx. 1 second, or
- No buttons are pressed for 60 seconds.

#### Programming mode

Use programming mode to configure the settings required to operate the device.


- Programming mode can be password-protected against unauthorized changes (only on the device).
- Press button 2 to switch between the 7 programming menus:

| PRG | Programming menu      |
|-----|-----------------------|
| 1   | Current transformer   |
| 2   | Voltage transformer   |
| 3   | Parameter list        |
| 4   | IP device address     |
| 5   | Subnet mask           |
| 6   | Gateway address       |
| 7   | Dynamic IP addressing |

#### INFORMATION

Changes only take effect once you exit the programming mode.

## 9.2 Button functions



### 9.3 Measuring display (examples)

You can display various measured values in display mode.

In this example, the display shows the voltages L against N at 230 V each.



Fig. Example display: Mains voltage per phase

The display only shows the first 3 significant digits of a value, but for all 3 phases simultaneously.

**Exception:** The energy meters for active energy, reactive energy and apparent energy use all display lines to show the large numerical values.

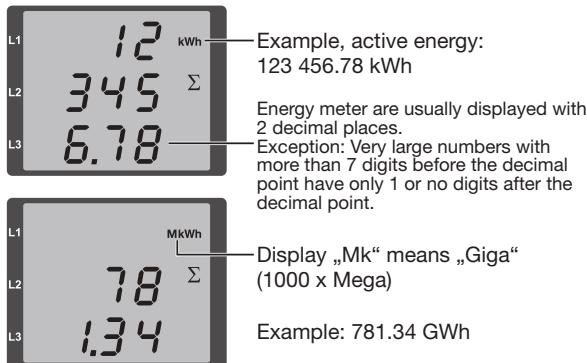



Fig. Example displays: Read off sum of energy meters

### Configurable measuring displays

The measuring displays can be adapted to suit your requirements:

- **Display change:** After an adjustable time has elapsed, the display can consecutively switch between measuring displays (see section „11.7 Changeover time (addr. 039)“ on page 44).
- **Display profiles** define which measured values are displayed. Profile 1 is preset. Several predefined profiles with additional measuring displays (e.g. harmonics) are available for selection.

### 9.4 Parameter display (example)

In programming mode, there is a submenu for displaying and setting the Modbus parameters. The parameter settings are stored in Modbus registers, which are addressed via addresses.

The example illustration shows the value of address "036" (backlighting, 0= dark, 9= bright).

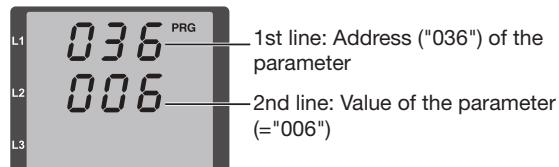



Fig. Example display in "Parameter" programming mode (for Modbus addresses up to approx. 800)

You can only enter the first 3 significant digits of a value on the device.

Values with more digits can be configured via Modbus.

## 10. Configuration

### 10.1 Applying the supply voltage

Only the supply voltage needs to be connected to configure the meter.

#### CAUTION

##### Material damage due to disregard of the connection instructions!

Disregard of the connection instructions can damage or destroy your device.

##### Observe the following:

- Observe the voltage and frequency specifications on the rating plate!
- Do not use the device for measuring DC voltage!


- If no display appears, check whether the supply voltage is within the nominal voltage range.

### 10.2 Programming menu – Overview

You can configure the device using the device's programming menu or more conveniently using the GridVis software.

#### PRG Programming menu

Open the programming menu: Press button 1+2.



>Password request if the programming menu is password-protected.

↓ Automatically if password is correct



1 CT:  
Current transformer ratio,  
primary/secondary

Long press ↑ 2 □ ↓ Press briefly



2 VT:  
Voltage transformer ratio,  
primary/secondary



Exit the programming menu: Press button 1+2.

**Parameters:**  
Submenu for setting Modbus parameters

**Adr:**  
IP device address (IPv4)  
(4 displays)

**Sub:**  
Subnet mask  
(4 displays)

**GAt:**  
Gateway (4 displays)

**dYn IP:**  
Dynamic/static address assignment

#### INFORMATION

The following pages explain the individual settings.

### 10.3 Open programming mode and enter password

If a user password has been set, the password is requested when switching to programming mode.

#### Open programming mode

- Press buttons 1 and 2 simultaneously until "PRG" appears at the top right of the display.
- If the password must be entered, the key symbol and "000" are displayed.

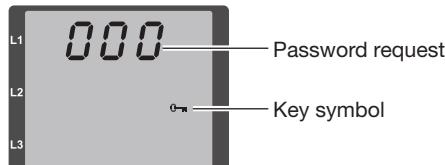



Fig. Enter password

#### Enter password

- The first digit of the password "000" blinks.
- Press button 2 to enter the first digit of the password.
- Press the button 1 to switch to the next digit.
- Once all 3 digits of the password have been entered correctly, the display automatically switches to the current transformer setting "CT".

#### ⓘ INFORMATION

You can find out how to set a password in chapter „11.1 User password (addr. 050)“ on page 42.

#### Exit programming mode

- Press buttons 1 and 2 simultaneously. The settings are saved and the measured values are displayed again (display mode).

### 10.4 Setting the current transformer (CT)

The measurement device must know the transformation ratio of the current transformers used. Enter the primary and secondary current.

- In programming mode (section 10.3), press button 2 until "CT" is displayed.
- Press button 1. The first digit of the primary current blinks.
- Use button 2 to set the blinking digit. Long press button 2 to reduce the value.
- Press button 1 to move to the next digit.
- When all 3 digits of the primary current are blinking:
  - Pressing button 2 briefly increases by a factor of 10 (example: 50 A -> 500 A -> 5 kA).
  - Long press button 2 to reduce by a factor of 10.
- Press button 1 until the secondary current blinks. Use button 2 to select between 1 A or 5 A.
- Press button 1 to complete the entry.
- Press buttons 1 and 2 simultaneously to save the setting.

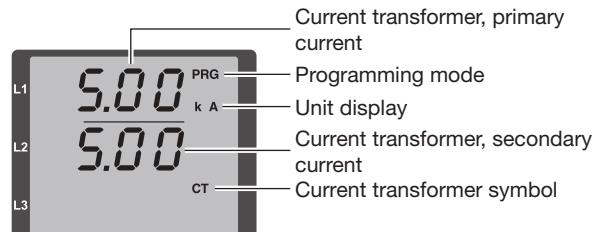



Fig. Setting the current transformer ratio

The factory setting is 5 A/5 A (primary/secondary).

#### ⓘ INFORMATION

In the device display there is only **one** transformer ratio for the current measurement inputs I1-I3. If you set different transformer ratios for the current measurement inputs in the GridVis software, the display shows "---".

## 10.5 Setting the voltage transformer (VT)

You only need to change the preset voltage transformer ratio if voltage transformers are connected. When connecting voltage transformers, observe the measured voltage specified on the rating plate!

- Open the programming mode with buttons 1+2.
- Press button 2 several times until "VT" is displayed.
- Use button 1 to select the blinking digit and button 2 to set the value, as with the current transformer setting.



Fig. Set the voltage transformer ratio

### **ⓘ INFORMATION**

In the device display there is only **one** transformer ratio for the voltage measurement inputs V1-V3. If you set different transformer ratios for the voltage measurement inputs in the GridVis software, the display shows "---".

## 10.6 Set parameters

Use the third submenu to display and set Modbus parameters (Modbus editor).

The device parameters can also be configured without a network connection using the Modbus editor. However, parameter configuration is more convenient with the GridVis PC software.

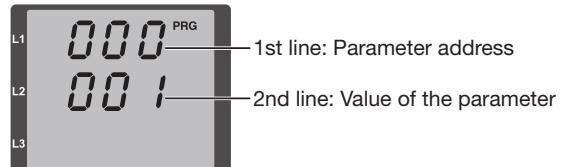



Fig. Programming parameters

Parameter configuration with the Modbus editor is described in chapter „11. Configuration“ on page 42.

### **ⓘ INFORMATION**

A complete overview of all parameters and Modbus addresses can be found in the Modbus address list of the device available for download at [www.janitza.com](http://www.janitza.com).

## 10.7 Dynamic or static IP address

Each device in the network has a unique IP address, which is assigned either manually or by a DHCP server.

The factory setting of DHCP means that the measurement device is automatically assigned an IP address in the network by the DHCP server when the device is started.

### Check/activate dynamic address assignment

- Open the programming mode with buttons 1+2.
- Press button 2 (1x long) until "dYn IP" is displayed.

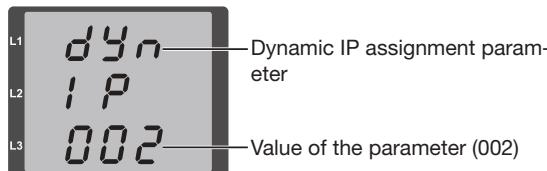



Fig. Dynamic IP assignment (DHCP) active

- Press button 1. The current setting blinks.
- Use button 2 to change the value to one of the values in the table:

| Address assignment mode (parameter dYn IP) |                                                                                                                                                                                                                                                          |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 000                                        | Static IP address<br>Assign a fixed address to the device.                                                                                                                                                                                               |
| 001                                        | Static IP address with Gratuitous ARP<br>The device sends an ARP packet to the network once after switching on or if the network configuration is changed. Application, for example, in networks in which a switch enables the port via the MAC address. |
| 002                                        | DHCP (Factory setting)<br>After switching on, the device dynamically obtains an IP address from a DHCP server.                                                                                                                                           |

- Press button 1 to accept the setting.
- Press buttons 1 and 2 simultaneously to save the setting.

## 10.8 Configuring IP address manually

If you are not using a DHCP server that automatically assigns the IP address to the measurement device, you must enter the IP address and the additional parameters **SUb** and **GAt** manually.

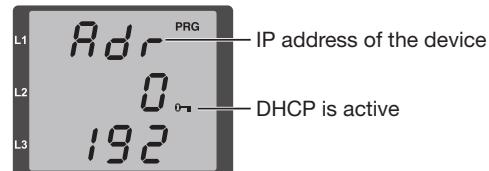



Fig. Device address, byte 0

**0** The key symbol for the parameters **Adr**, **SUb** and **GAt** indicates that dynamic address assignment with DHCP is active and the parameters are locked. You must first deactivate and save the dynamic assignment before starting the manual configuration.

### Deactivating dynamic address assignment

- Open the programming mode with buttons 1+2.
- Press button 2 (1x long) until "dYn IP" is displayed.

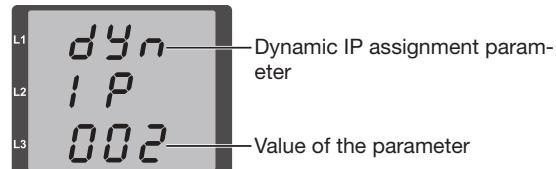



Fig. Dynamic IP assignment (DHCP) active

- Press button 1. The setting "002" blinks.
- Use button 2 to change the value to "000" or "001".
- Press button 1 to accept the setting.
- Press buttons 1 and 2 simultaneously to save the setting.

Alternatively, you can continue with the setting of **Adr**, **SUb** and **GAt** and then save at the end.

### INFORMATION

The device saves **dyn IP**, **Adr**, **SUb** and **GAt** only when the programming mode is exited and only activates these settings then. It is therefore not necessary to exit the programming mode in between.

### 10.8.1 Configuring a static IP address (Adr)

Ask the network administrator which IP addresses and other settings should be used.  
An IP address consists of 4 bytes with the following structure (example):

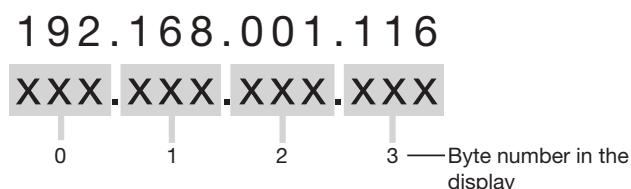



Fig. Example of an IPv4 device address

Bytes 0 to 3 are divided into 4 displays. Press button 1 to display them one after the other.

**Prerequisite:** The key symbol is not displayed (= DHCP is deactivated, see section „10.8 Configuring IP address manually“ on page 40).

- Open the programming mode with buttons 1+2.
- Press button 2 several times until "Adr" is displayed.

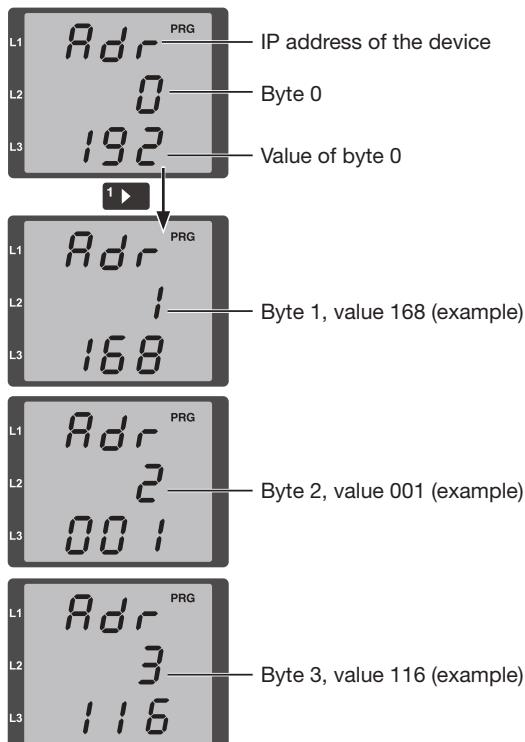



Fig. Device address, bytes 0 to 3

- Press button 1 several times to display all bytes of the address.
- Use button 2 to change the value of the blinking digit if required.
- Press buttons 1 and 2 simultaneously to save the setting.

### 10.8.2 Configuring the subnet mask (SUb) and gateway (GAt)

The subnet mask and the gateway each consist of 4 bytes. Configure these identically to the IP address with separate displays for each byte.

**Prerequisite:** DHCP is deactivated.

- Open the programming mode with buttons 1+2.
- Press button 2 several times until "SUb" or "GAt" is displayed.

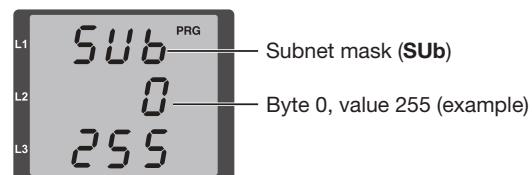



Fig. Subnet mask (4 displays)

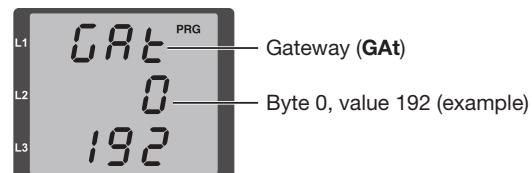



Fig. Gateway address (4 displays)

- Press button 1 several times to display all bytes of the address.
- Use button 2 to change the value of the blinking digit if required.
- Press buttons 1 and 2 simultaneously to save the setting.

## 11. Configuration

You can use Modbus parameters to make further settings.

You can display and configure many parameters directly on the device by entering the specified Modbus address. The following sections explain the most important parameters and their settings.

### Configuration on the device

- Press buttons 1 and 2 simultaneously to open the programming mode. The display shows "PRG" and "CT".
- Press button 2 several times until only "PRG" is displayed next to the three-digit numbers.

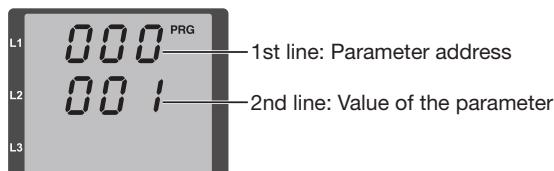



Fig. Programming parameters

#### Select parameters (1st line)

- Press button 1. The first digit of the parameter address blinks.
- Press button 1 to move to the next digit.
- Use button 2 to set the blinking digit. Long press button 2 to reduce the digit.

#### Set value (2nd line)

The 2nd line shows the current value of the parameter selected in the 1st line.

- Press button 1 again until the first digit of the value blinks.
- Use buttons 1 and 2 to change the value of the parameter.
- Press button 1 to complete the entry.
- Press buttons 1 and 2 simultaneously to save the setting.

#### INFORMATION

- Use the GridVis PC software for convenient configuration of all parameters.
- A complete overview of all parameters and Modbus addresses can be found in the Modbus address list of the device available for download at [www.janitza.com](http://www.janitza.com).

### 11.1 User password (addr. 050)

A user password can protect the programming menu from unauthorized changes. No user password is assigned at the factory.

#### Set the password (addr. 050)

- In programming mode, press button 2 several times until the parameter display is shown.
- Enter address "050" on the first line.
- Enter the desired password consisting of 3 digits on the second line.
- The value "000" in the password means that there is no password and none is requested when the configuration is opened.

#### Forgotten password

If you no longer know the password, you can only delete it using the GridVis PC software.

To do this, connect the measurement device to the PC via the Ethernet interface. Further information can be found in the GridVis online help.

## 11.2 Mains frequency (addr. 034)

The measurement device can automatically determine the mains frequency if a voltage L1-N of greater than 20 V<sub>rms</sub> (or 34 V<sub>rms</sub> in 3-conductor networks) is present at the voltage measurement input V1.

The sampling frequency for the current and voltage inputs is then calculated from the mains frequency. The meter requires approx. 5 s after switching on to automatically determine the frequency. During this time, the measured values do not meet the specified accuracy.

If the measurement device cannot determine the frequency (in the case of poor power quality, the sine wave of the voltage may be distorted to such an extent that double zero crossings occur, for example), you can set a fixed nominal frequency.

### Mains frequency (addr. 034):

| Setting  | Meaning                                                                                        |
|----------|------------------------------------------------------------------------------------------------|
| 0        | Automatic frequency detection:<br>The mains frequency is determined from the measured voltage. |
| 45 .. 65 | Fixed frequency:<br>A fixed mains frequency is preset and is not measured.                     |

### INFORMATION

For a setting of 0 (automatic frequency detection), the following apply:

- If there is no measured voltage at V1, the measurement device cannot determine the mains frequency and therefore cannot calculate a sampling frequency (error "EEE 500" is displayed).
- Voltage, current and all other resulting values are calculated on the basis of 50 Hz. Consequently, during the error state, the measured values no longer comply with the specified accuracy.
- When the frequency can once again be measured, the correct measured values are displayed again automatically.
- The EEE 500 error is not displayed if a fixed frequency is set.

## 11.3 LCD contrast (addr. 035)

The contrast of the LCD display can be adjusted in dependence on the viewing angle. The contrast can be set from 0 to 9 in steps of 1:

- 0 = Character very bright
- 9 = Character very dark

Factory setting = 5

## 11.4 LCD brightness

The brightness of the backlight makes the display easy to read even in poor visibility conditions. The brightness can be set in a range from 0 to 9 in steps of 1. Different brightness values can be set for the operation and standby modes.

### Operating backlight (addr. 036)

The operating backlight is activated when a button is pressed or when there is a restart.

### Standby backlight (addr. 747)

If no button is pressed within a selectable period of time, the device switches to standby mode. When a button is pressed, the device switches to the operating backlight and the defined period is restarted.

| Addr. | Description                                            | Setting range | Standard factory setting |
|-------|--------------------------------------------------------|---------------|--------------------------|
| 036   | Brightness with operating backlight                    | 0 .. 9        | 6                        |
| 746   | Time period after which the system switches to standby | 60 .. 9999 s  | 900 s                    |
| 747   | Brightness with standby backlight                      | 0 .. 9        | 0                        |

0 = minimum brightness, 9 = maximum brightness

If the brightness values of both types of lighting are the same, there is no visible change between the operating and standby backlighting.

## 11.5 Display profile (addr. 037)

After a restoration of power, the meter displays the first measured value from the display profile currently activated. To keep the number of measuring displays manageable, only some of the possible measuring displays are included in the standard profile. If you also want to display harmonics, select the other fixed display profile.

### Display profile (addr. 037):

| Setting | Meaning                                                                                                |
|---------|--------------------------------------------------------------------------------------------------------|
| 0       | Display profile 1<br><b>Standard:</b> typical displays can be shown, but no harmonic displays          |
| 1       | Display profile 2<br><b>Maximum:</b> all displays can be shown, including harmonics and the comparator |

### Profile selection

An overview of all displays in profiles 1 and 2 can be found in chapter „14. Overview of measuring displays – display profiles 1 and 2“ on page 55.

## 11.6 Display change profile (addr. 038)

Address 038 specifies which measured values are automatically displayed in a fixed order if a change-over time  $> 0$  s (addr. 039) is set.

For this *Display switching*, select only the most important displays to achieve better clarity for the operator.

All displays from the display profile can be called up at any time by pressing a button.

### Display change profile (addr. 038):

| Setting | Meaning                                                                                     |
|---------|---------------------------------------------------------------------------------------------|
| 0       | Display change profile 1<br><b>Standard:</b> automatic switching between typical displays   |
| 1       | Display change profile 2<br><b>Maximum:</b> all displays are used for automatic switching   |
| 2       | Display change profile 3<br><b>Minimal:</b> automatic switching between only a few displays |

## 11.7 Changeover time (addr. 039)

This parameter specifies whether and after what time the display automatically switches to the next display.

The display changeover starts when no button has been pressed for 60 seconds.

- Setting range: 0 .. 60 seconds per display

For a *Measured value rotation* of the selected measuring displays to take place (addr. 038) requires that a time  $> 0$  s be set.

If 0 seconds is set, the last display selected is shown continuously.

## 11.8 Averaging time for average values

Average values are marked on the display with a horizontal bar above the measured value. The meter calculates moving average values for current, voltage and power measurements.

You can select the averaging time from a list of 9 fixed times separately for each of the following:

- Current values (addr. 040)
- Power values (addr. 041)
- Voltage values (addr. 042)

| Setting | Averaging time/seconds |
|---------|------------------------|
| 0       | 5                      |
| 1       | 10                     |
| 2       | 15                     |
| 3       | 30                     |
| 4       | 60                     |
| 5       | 300                    |
| 6       | 480 (factory setting)  |
| 7       | 600                    |
| 8       | 900                    |

### Averaging method

After the set averaging time, the average value has reached at least 95% of the measured value when using the exponential method.

## 11.9 TDD nominal current (addr. 043)

TDD stands for Total Demand Distortion and is similar to THD (Total Harmonic Distortion). TDD is a characteristic parameter for the harmonic current distortions that occur in relation to the maximum current of the system that occurs.

To determine the TDD, you must enter the maximum current that occurs in the system (nominal current under full load).

While the TDD value is fixed in relation to the nominal current entered, THD is a dynamic parameter for the harmonic distortion in relation to the actual measured current.

## 11.10 Minimum and maximum values

All measured values are measured and calculated every 200 ms, i.e. 10 measured values/period at 50 Hz and 12 at 60 Hz. Minimum and maximum values are determined for most measured values.

The minimum value is the smallest measured value that has been determined since the last deletion. The maximum value is the largest measured value that has been determined since the last deletion. All minimum and maximum values are compared with the corresponding measured values and are overwritten if they are exceeded or undershot.

The minimum and maximum values are saved persistently every 5 minutes without date and time. This means that the values are retained even after a failure of the operating voltage and at most the values from the last 5 minutes can be lost.

### Clear min. and max. values (addr. 506)

If a "001" is written to address 506, all minimum and maximum values are cleared at the same time.

### Maximum average current values (D 03)

You can clear these directly in display menu D 03 by long pressing button 2 as an alternative to clearing via addr. 506. The maximum average current values per phase are set to 0 (the display remains 0 as long as the button is pressed). When button 2 is released, the device adopts the present average current values for each phase as the maximum average current values.

The Back function triggered by a long press of button 2 does not work in D 03.

## 11.11 Energy meters and tariffs

The meter can be used to record active, reactive and apparent energy separately in up to 7 tariffs (e.g. for each day of the week or for shift operation). The device display shows the total quantity for each energy meter independently of the tariff, i.e. the total across all tariffs.

You can read out the meter readings for the individual tariffs and the totals via the GridVis software or via Modbus addresses.

### Tariff change

You can activate a different tariff for an energy meter via Modbus addresses.

Example:

- Address 619 specifies which tariff is active for the "Consumed active energy" meter.
- To switch to tariff 3 for this meter, set bit 2 in addr. 619 to the value 1.

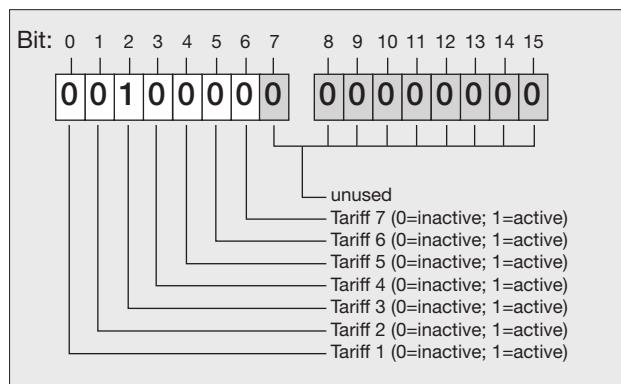



Fig. Meaning of the bits in Modbus addresses 618-624

If you set 2 bits of the same address to the value 1, the more significant bit is ignored.

Example: Bits 2 and 4 are set to 1, so tariff 3 is activated. Bit 4 (tariff 5) is ignored.

## 11.12 Clear energy meter (addr. 507)

The active, reactive and apparent energy meters can only be cleared together.

To clear the contents of the energy meters, write "001" to address 507.

### INFORMATION

- Clearing the energy meters causes this data to be lost in the device. To avoid possible data loss, you should read out and save these measured values with the GridVis software before clearing them.
- We recommend clearing the energy meters and the min/max values at the end of commissioning.

## 11.13 Firmware version

The device firmware is improved and expanded on an ongoing basis. The version is distributed via three Modbus addresses in the format (example):

01 . 07 . 02  
Major version      Minor version      Patch version

|                    | Main version | Subversion | Patch version |
|--------------------|--------------|------------|---------------|
| Application        | 743          | 744        | 745           |
| Stage 0 bootloader | 737          | 738        | 739           |
| Stage 1 bootloader | 740          | 741        | 742           |

Tab. Modbus addresses of the firmware version (format ushort)

## 11.14 Serial number (addr. 754)

The serial number displayed in the meter has 6 digits and is part of the serial number displayed on the rating plate.

The serial number cannot be changed.



The display shows the last 6 digits of the serial number on the rating plate:  
XX00/0000

Fig. Serial number display

### 11.15 Comparator for limit value monitoring

Two comparator groups (1 - 2), each with 3 comparators (A - C) are available for monitoring limit values. The results of comparators A to C can be linked with AND or OR.

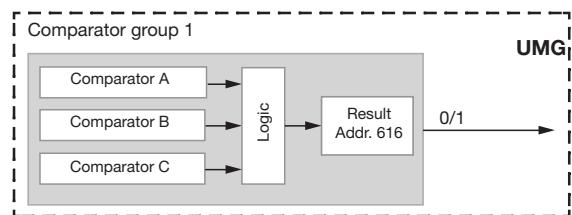



Fig. Block diagram for comparator group 1

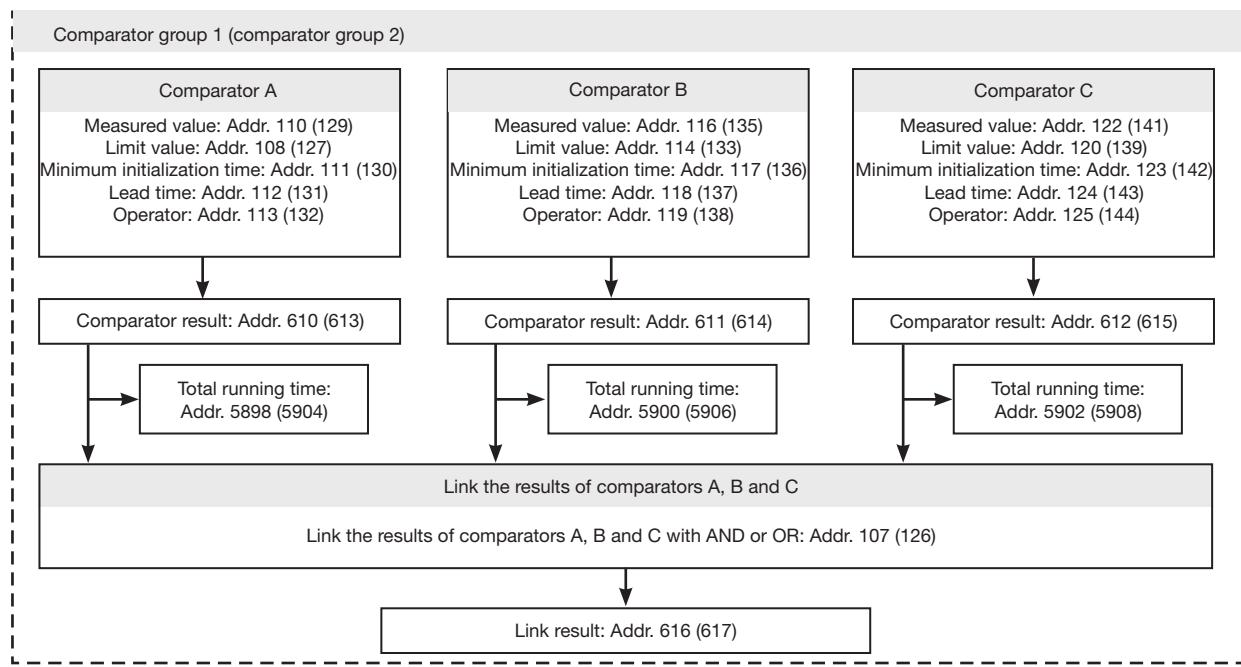



Fig. Parameter addresses of comparator group 1 (comparator group 2)

| Parameters                                                                       | Explanation                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Measured value:</b><br><b>Addr. 110, 116, 122 (129, 135, 141)</b>             | The address of the measured value to be monitored.<br>Measured value = 0, the comparator is inactive.                                                                                                         |
| <b>Limit value:</b><br><b>Addr. 108, 114, 120 (127, 133, 139)</b>                | The value with which the measured value is to be compared.                                                                                                                                                    |
| <b>Min. initialization time:</b><br><b>Addr. 111, 117, 123 (130, 136, 142)</b>   | The comparator result (e.g. addr. 610) is retained for the duration of the minimum initialization time. Setting range: 1 .. 32000 s                                                                           |
| <b>Lead time:</b><br><b>Addr. 112, 118, 124 (131, 137, 143)</b>                  | A limit violation must exist for at least the duration of the lead time before the comparator result is changed.<br>Setting range: 1 .. 32000 s                                                               |
| <b>Operator "&gt;=" or "&lt;":</b><br><b>Addr. 113, 119, 125 (132, 138, 144)</b> | For the comparison of the measured value and limit value:<br>Operator = 0 corresponds to greater than or equal to (>=)<br>Operator = 1 corresponds to smaller (<)                                             |
| <b>Comparator result:</b><br><b>Addr. 610, 611, 612 (613, 614, 615)</b>          | The result of the comparison between the measured value and the limit value:<br>0 = There is no limit violation.<br>1 = There is a limit violation.                                                           |
| <b>Total running time:</b><br><b>Addr. 5898, 5900, 5902 (5904, 5906, 5908)</b>   | The sum of all comparator running times, i.e. the times for which a limit violation was present in the comparator result. The total running times of the comparators can be reset using the GridVis software. |
| <b>Link: Addr. 107 (126)</b>                                                     | Link the results of comparators A, B and C with AND (=1) or OR (=0).                                                                                                                                          |

Tab. Explanation of addresses for comparator group 1 (comparator group 2)

| Parameters                                                                | Explanation                                        |
|---------------------------------------------------------------------------|----------------------------------------------------|
| <b>Link result:<br/>Addr. 616 (617)</b>                                   | Total result of the linked comparators A, B and C. |
| Tab. Explanation of addresses for comparator group 1 (comparator group 2) |                                                    |

### How the comparators work

- The set limit value is compared with the measured value.
- If there is a limit violation for at least the duration of the lead time, the comparator result is changed.
- The result of the comparator is retained during the limit violation, but at least for the duration of the minimum activity time (minimum initialization time).
- The comparator result is reset as soon as there is no longer a limit violation and the minimum activity time has expired.

### Comparator running time (total running time)

The comparator running time is a time counter for each comparator that adds up the total time that the comparator output was set to active. This means that if the condition of the comparator is fulfilled and the lead time has expired, the counter increases by the corresponding amount of time.

The minimum initialization time is taken into account here.

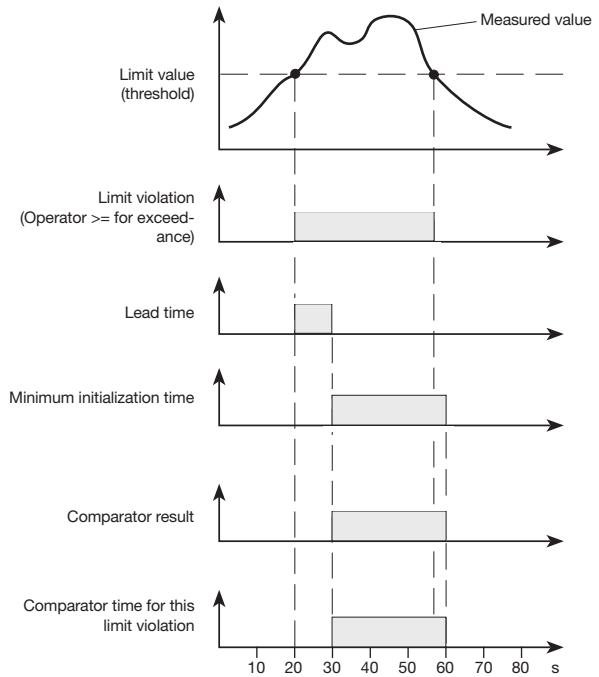



Fig. Comparator (example with 10 s lead time and 30 s minimum activity time)

### Example: Neutral conductor current monitoring with a comparator

If the neutral conductor current  $I_N$  exceeds 100 A for 60 seconds, the result of comparator group 1 should be set for at least 2 minutes.

The following programming steps must be carried out:

#### 1. Comparator group 1

We select comparator group 1 for the limit value monitoring. As only one limit value is being monitored, we select comparator A and program it as follows:

The address of the measured value to be monitored from comparator A:

Addr. 110 = 866 (address of the calculated neutral conductor current)

The measured values for comparators B and C are assigned 0:

Addr. 116 = 0 (The comparator is inactive)

Addr. 122 = 0 (The comparator is inactive)

The limit value to be complied with:

Addr. 108 = 100 (100 A)

For a minimum initialization time of 2 minutes, the result of comparator group 1 if the limit value is exceeded should be set:

Addr. 111 = 120 (120 s)

For the lead time of 60 seconds, the overrun must be present for at least:

Addr. 112 = 60 (60 s)

The operator for the comparison between the measured value and the limit value:

Addr. 113 = 0 (corresponds to  $\geq$ )

#### 2. Link comparators

The comparators B and C were not set and are equal to zero.

The OR link or the comparators A, B and C causes the result of comparator A to be output as the comparator result:

Addr. 107 = 0 (OR link)

#### Result

If the neutral conductor current exceeds 100 A for more than 60 seconds, the result of comparator group 1 is set for at least 2 minutes.

---

#### INFORMATION

- You can view the results of the comparators on the displays B20-G20 on the device.
- Use the GridVis software to conveniently evaluate the comparators and set them up using the device configurator.

---

## 12. Commissioning

Ensure that the following steps are carried out before commissioning:

- Mounting
- Installation
- Configuration and parametrization

### 12.1 Applying the supply voltage

#### **WARNING**

**Life-threatening danger due to electrical voltage if installed incorrectly!**

Incorrect connection or exposed cable ends can result in parts being live.

- **Check the wiring before switching on for the first time.**

1. Connect the supply voltage to the back of the device.
2. The start screen appears on the display of the measurement device.
3. If no display appears, check whether the supply voltage is within the nominal voltage range.

#### **CAUTION**

**Material damage due to disregard of the connection instructions!**

Disregard of the connection instructions can damage or destroy your device.

**Observe the following:**

- Observe the voltage and frequency specifications on the rating plate!
- Do not use the device for measuring DC voltage!

### 12.2 Apply measured voltage

#### **WARNING**

**Risk of injury due to electrical voltage!**

If the device is exposed to surge voltages above the permissible overvoltage category, safety-relevant areas of insulation in the device can be damaged. This means that the safety of the product can no longer be guaranteed.

**Only use the device in environments in which the permissible overvoltage category is not exceeded.**

#### **INFORMATION**

In networks with nominal voltages that exceed the specified nominal voltages, connect the voltage measurement inputs via voltage transformers (see section „7.1 Nominal voltages“ on page 23)!

Apply measured voltage:

1. Connect the measured voltage to the terminals of the voltage measurement inputs.
2. Check the measured values displayed by the device for the voltages L-N and L-L.

Take into account any voltage transformer factors that may be set!

### 12.3 Applying the measured current

The device

- Is designed for the connection of current transformers with secondary currents of ..1 A and ..5 A.
- Does not measure DC currents.

1. Make sure that the current transformer ratio has been adapted for the current transformers used.
2. Short-circuit all current transformer outputs except one.
3. Compare the current displayed on the device with the applied input current.
  - The currents must match after taking the current transformer ratio into account.
  - In the short-circuited current measurement inputs, the device must indicate approx. 0 amperes.

## 12.4 Checking the frequency and direction of rotary field

The meter measures the frequency automatically with the factory settings.

1. Use button 1 to scroll through the measuring display until the frequency is displayed.
2. If the frequency cannot be determined, make a fixed setting for it (see section „11.2 Mains frequency (addr. 034)“ on page 43).
3. The movement of the character string on the third line of the display indicates the direction of the rotary field.

A "right" rotating field at the voltage measurement inputs is present when the character string moves clockwise. Usually it is a "right" rotating field.



Fig. Display of the mains frequency (50.0) and the direction of the rotary field



Fig. No direction of the rotary field can be determined ("---").

### **INFORMATION**

The direction of the rotary field is only determined when all measured voltages are applied. If a phase is missing or two identical phases are connected, the direction of rotary field is not determined and the character string in the display does not move.

## 12.5 Checking the phase assignment

1. Short-circuit a current transformer on the secondary side.  
The current displayed in the meter must drop to 0 A in the corresponding phase.
2. Repeat this for the other phases.
3. If a phase is reversed, correct the wiring or the phase assignment in the GridVis software.

## 12.6 Checking the active power measurement

1. Short-circuit all but one of the current transformers on the secondary side.
2. The meter must only show power in the phase that is not short-circuited.
3. If this is not the case, check the connection of the measured voltage and the measured current.
4. If the amount of active power is correct, but the sign of the active power is negative, this can have two causes:
  - The connections S1(k) and S2(l) on the current transformer are reversed. Swapped connections can be corrected in GridVis as an option.
  - Active energy is returned to the grid.

**Correctly connected voltage and current measurement inputs result in correctly calculated and displayed individual and summation power readings.**

## 12.7 Checking the apparent power measurement

If a current transformer is assigned to the wrong phase, the corresponding power will be measured and displayed incorrectly.

The phase conductor and current transformer are correctly assigned on the device if there is no voltage between the phase conductor and the associated current transformer (primary).

1. To ensure that a phase conductor at the voltage measurement input is assigned to the correct current transformer, short-circuit the respective current transformer on the secondary side.  
The **apparent power** displayed by the device must then be zero in this phase conductor.
2. If the apparent power is displayed correctly but the active power has a negative ("−") sign, then the current transformer terminals are reversed or power is being supplied to the electric utility.

## 12.8 Checking summation power

If all voltages, currents and powers for the respective phase conductors are correctly displayed, the summation powers measured by the device are also correct.

1. For confirmation, compare the summation power measured by the device with the work values of the active and reactive power meters located in the feeder.

## 12.9 Checking the communication

1. Check the LEDs to see if there is any network activity.

### Meaning of the LEDs

| LED    | Function                                         |
|--------|--------------------------------------------------|
| Green  | Is illuminated when there is a connection (link) |
| Yellow | Blinks during network activity                   |

## 12.10 Clear meter readings

We recommend clearing any production-related content from the following meters:

- Meter readings for active, apparent and reactive energy
- Meter readings of the minimum and maximum values for all measured values (see measuring displays)

1. Clear min/max values by writing "001" to parameter address 506 (see chapter „11. Configuration“ on page 42).
2. Clear energy meters by writing "001" to parameter address 507,

## 13. Operation

### 13.1 Time recording

The measurement device does not have a built-in clock, but the operating time is recorded with the help of the processor. The measurement device records the operating hours and the total running time of each comparator.

- Operating hours are measured with a resolution of 0.1 h.
- The time is displayed in seconds (when 999999 s is reached, the time is displayed in hours).

The measuring display shows a maximum of 99999.9 h (= 11.4 years).

### 13.2 Reading out the operating hours meter

The operating hours meter measures the time during which the measurement device records and displays measured values.

The operating hours are measured with a resolution of 0.1 h and are displayed in hours. The operating hours meter cannot be reset.



Fig. Operating hours meter display (measuring display A20), example 140.8 h

Example: The operating hours meter displays 140.8 hours. This corresponds to 140 hours and 80 industry minutes. Since 100 industry minutes correspond to 60 minutes, the 80 industry minutes in this example are 48 minutes.

### 13.3 Reading out the total running time of the comparators

The total running time of a comparator is the sum of all times for which there was a limit violation in the comparator result (see chapter „11.15 Comparator for limit value monitoring“ on page 47).

You can read the total running time of each comparator as a measured value on the display. The running time is displayed in seconds (s) or hours (h).

The comparators are marked on the display with the numbers 1 to 6:

| Display | Display 1st line | Meaning                           |
|---------|------------------|-----------------------------------|
| B20     | 1                | Total running time, comparator 1A |
| C20     | 2                | Total running time, comparator 2A |
| D20     | 3                | Total running time, comparator 1B |
| E20     | 4                | Total running time, comparator 2B |
| F20     | 5                | Total running time, comparator 1C |
| G20     | 6                | Total running time, comparator 2C |

Tab. Measuring displays B20 .. G20

#### INFORMATION

The total running times of the comparators can be reset by resetting the device to the factory settings.

### 13.4 Displaying harmonics

Harmonics are caused, for example, by equipment with non-linear characteristics. These additional frequencies represent the integral multiple of a fundamental oscillation and show how the equipment affects the mains. Possible effects of harmonics are, for example:

- Additional heating of operating equipment.
- An additional current on the neutral conductor.
- Overloading and a reduced service life of electrical equipment.

**Harmonic loads are the main cause of invisible power quality problems involving enormous costs for repair and investment for the replacement of defective equipment.**

The fundamental oscillation of the voltage must be in the range 45 .. 65 Hz. The calculated harmonics of the voltages and currents are referenced to the fundamental oscillation and specified in volts or amperes.

The measurement device calculates harmonics up to 40 times the fundamental oscillation (40th harmonic). The display shows the harmonics up to the 15th harmonic, while the measured values for higher harmonics can be read out via Modbus.

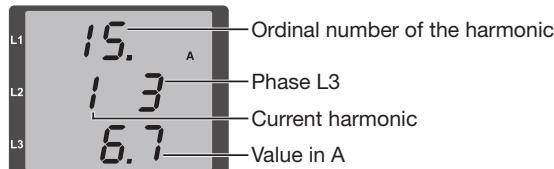
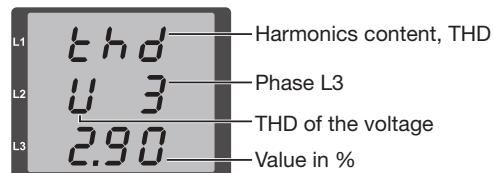
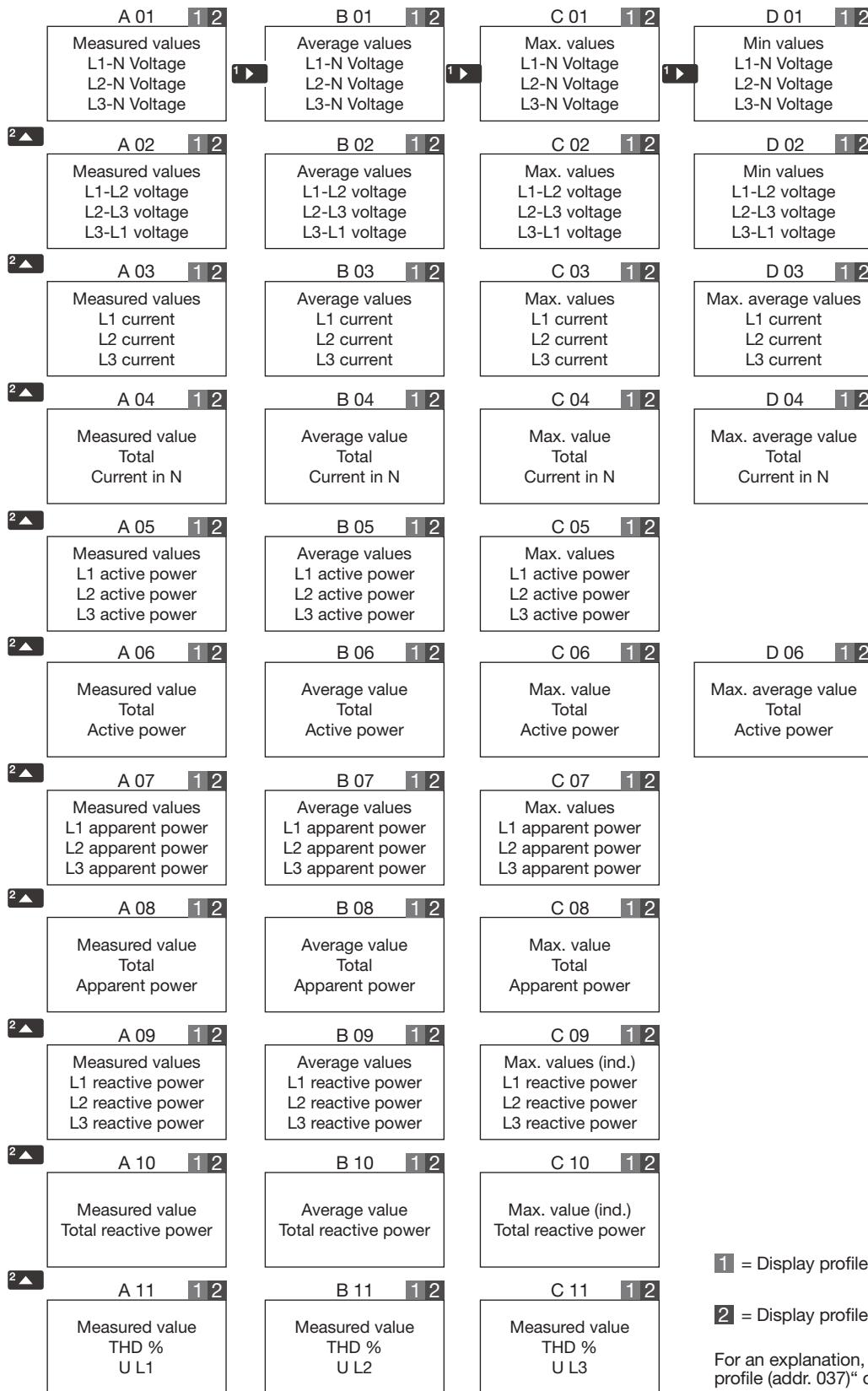



Fig. Display of the 15th harmonic of the current in phase L3 (example).

### Harmonics content, THD

THD (total harmonic distortion) is the performance characteristic for the total harmonic distortion. THD is the ratio of the RMS value of the harmonics to the RMS value of the *Fundamental oscillation* in percent. THD can be determined for voltages or currents.

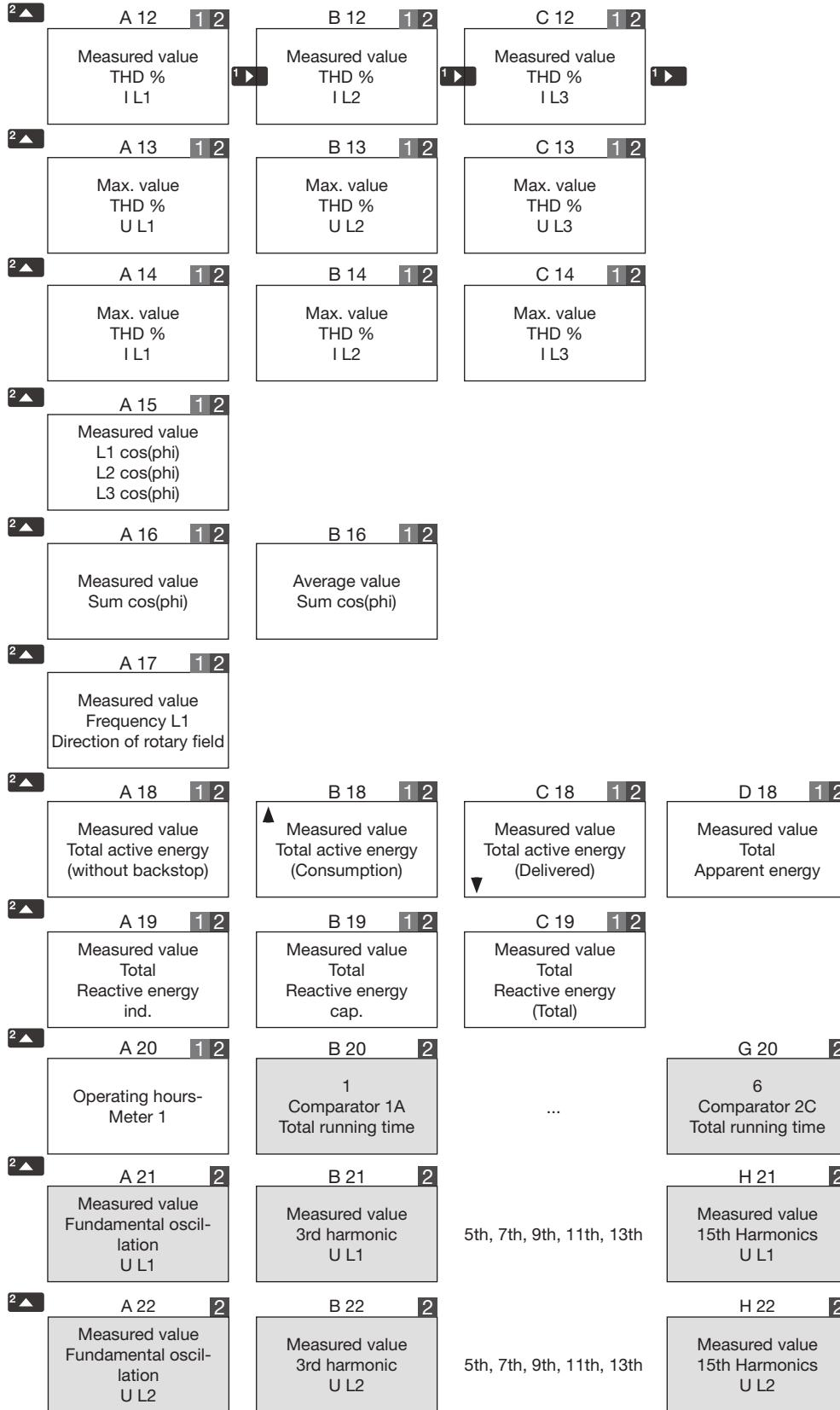




Fig. Display of the harmonics content, THD, of the voltage from phase L3 (example).

THD is also referred to colloquially as distortion factor, although distortion factor is the ratio of the harmonics relative to the *total signal*. With a low harmonic content, the two variables therefore approach each other.

#### INFORMATION

To display the harmonics of voltages or currents in volts or amperes on the display, select display profile 2.


## 14. Overview of measuring displays – display profiles 1 and 2



1 = Display profile 1, standard

2 = Display profile 2, with harmonics

For an explanation, see section „11.5 Display profile (addr. 037)“ on page 44.

**Present display**

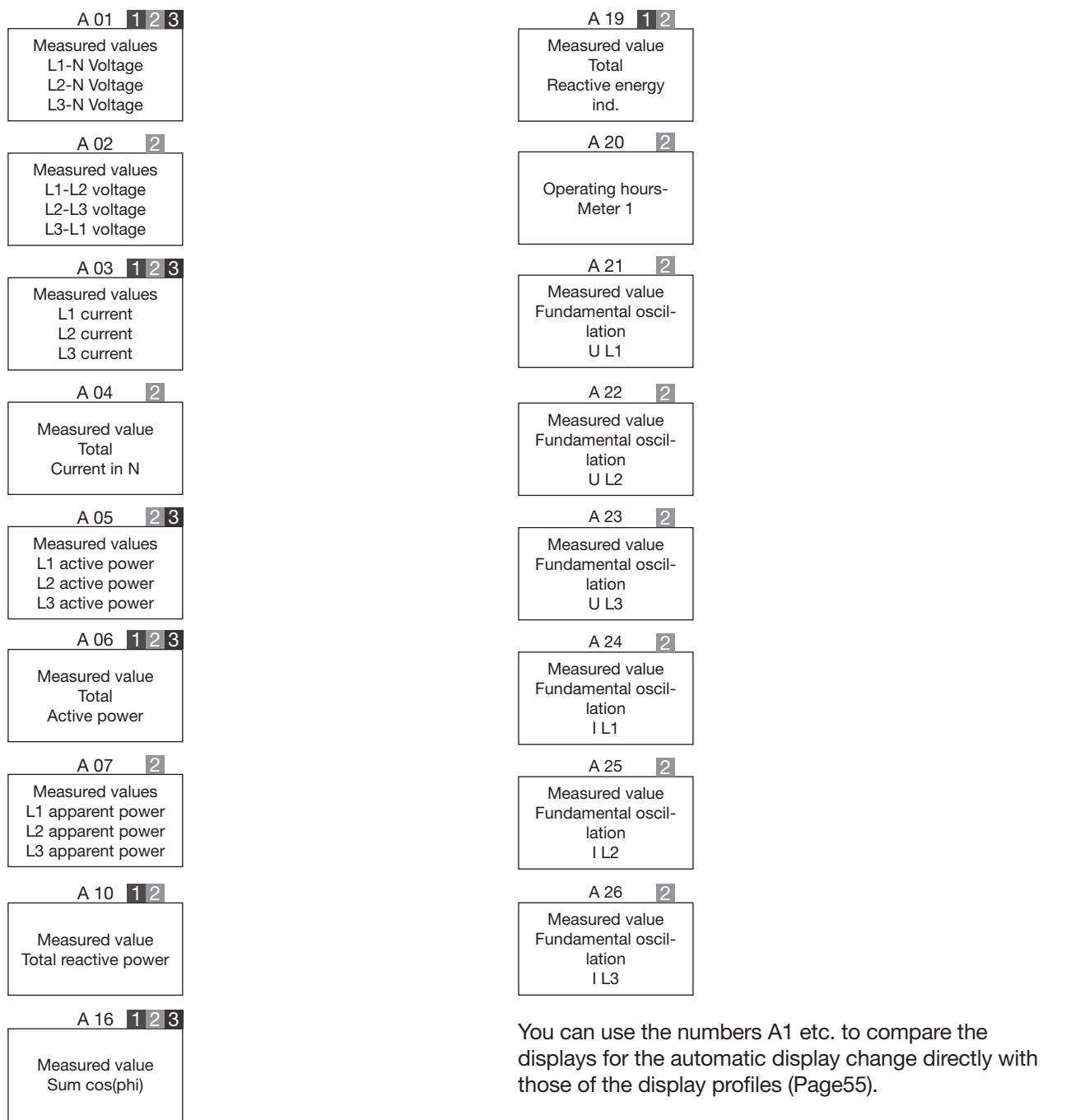
You can use the Modbus address 26000 to query which display is presently being shown. A string in the format "A01", "H21", etc. is returned (at least 4 bytes).

**Comparator**

Running time: Page53  
Function: Page47

**Harmonics**

Page54


Even and odd harmonics of the voltages and currents of the 1st-40th harmonics can be called up and visualized with the GridVis software.

|             |   |                                                        |             |   |                                        |             |   |                                          |
|-------------|---|--------------------------------------------------------|-------------|---|----------------------------------------|-------------|---|------------------------------------------|
| <b>A 23</b> | 2 | Measured value<br>Fundamental oscil-<br>lation<br>U L3 | <b>B 23</b> | 2 | Measured value<br>3rd harmonic<br>U L3 | <b>H 23</b> | 2 | Measured value<br>15th Harmonics<br>U L3 |
| <b>A 24</b> | 2 | Measured value<br>Fundamental oscil-<br>lation<br>I L1 | <b>B 24</b> | 2 | Measured value<br>3rd harmonic<br>I L1 | <b>H 24</b> | 2 | Measured value<br>15th Harmonics<br>I L1 |
| <b>A 25</b> | 2 | Measured value<br>Fundamental oscil-<br>lation<br>I L2 | <b>B 25</b> | 2 | Measured value<br>3rd harmonic<br>I L2 | <b>H 25</b> | 2 | Measured value<br>15th Harmonics<br>I L2 |
| <b>A 26</b> | 2 | Measured value<br>Fundamental oscil-<br>lation<br>I L3 | <b>B 26</b> | 2 | Measured value<br>3rd harmonic<br>I L3 | <b>H 26</b> | 2 | Measured value<br>15th Harmonics<br>I L3 |
| <b>A 27</b> | 2 | Max. value<br>Fundamental oscil-<br>lation<br>U L1     | <b>B 27</b> | 2 | Max. value<br>3rd harmonic<br>U L1     | <b>H 27</b> | 2 | Max. value<br>15th Harmonics<br>U L1     |
| <b>A 28</b> | 2 | Max. value<br>Fundamental oscil-<br>lation<br>U L2     | <b>B 28</b> | 2 | Max. value<br>3rd harmonic<br>U L2     | <b>H 28</b> | 2 | Max. value<br>15th Harmonics<br>U L2     |
| <b>A 29</b> | 2 | Max. value<br>Fundamental oscil-<br>lation<br>U L3     | <b>B 29</b> | 2 | Max. value<br>3rd harmonic<br>U L3     | <b>H 29</b> | 2 | Max. value<br>15th Harmonics<br>U L3     |
| <b>A 30</b> | 2 | Max. value<br>Fundamental oscil-<br>lation<br>I L1     | <b>B 30</b> | 2 | Max. value<br>3rd harmonic<br>I L1     | <b>H 30</b> | 2 | Max. value<br>15th Harmonics<br>I L1     |
| <b>A 31</b> | 2 | Max. value<br>Fundamental oscil-<br>lation<br>I L2     | <b>B 31</b> | 2 | Max. value<br>3rd harmonic<br>I L2     | <b>H 31</b> | 2 | Max. value<br>15th Harmonics<br>I L2     |
| <b>A 32</b> | 2 | Max. value<br>Fundamental oscil-<br>lation<br>I L3     | <b>B 32</b> | 2 | Max. value<br>3rd harmonic<br>I L3     | <b>H 32</b> | 2 | Max. value<br>15th Harmonics<br>I L3     |

## 14.1 Overview of automatic display changes, profiles 1 to 3

If no button is pressed, the display can automatically switch between the following measuring displays according to the selected profile (addr. 038).

The display duration can be set in the change-over time parameter (addr. 039).



You can use the numbers A1 etc. to compare the displays for the automatic display change directly with those of the display profiles (Page55).

## 15. Error messages and overrange measurements

The device shows three types of messages on the display:

1. Overrange measurements
2. Warnings (simple errors)
3. Serious errors

In all three cases, the display shows "EEE". Errors can be recognized in that the "EEE" symbol is followed by an error code.

### 15.1 Overrange measurements

The measuring range is exceeded if at least one of the three voltage or current measurement inputs lies outside its specified measuring range.

The overrange message is displayed as long as the condition is present and cannot be acknowledged.

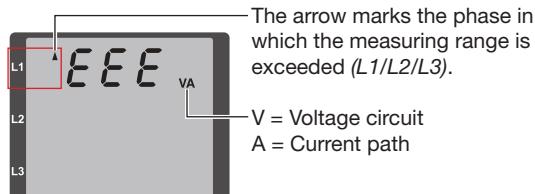



Fig. Display of a measuring overrange

The phase in which the measuring range was exceeded is marked with an "up" arrow.

The "V" and "A" symbols show whether the overrange has occurred in the current or voltage circuit.

#### Measuring overrange limit values:

|                  |   |                                                                                                |
|------------------|---|------------------------------------------------------------------------------------------------|
| I                | = | Approx. 7.1 A <sub>rms</sub>                                                                   |
| U <sub>L-N</sub> | = | Approx. 310 V <sub>rms</sub>                                                                   |
| U <sub>L-L</sub> | = | Approx. 510 V <sub>rms</sub> with 3p 4u and 3p 2u<br>(voltage measurement connection variants) |

Remedy if the measuring range is exceeded:  
see „16. Procedure in the event of a malfunction“ on page 61.

Examples:

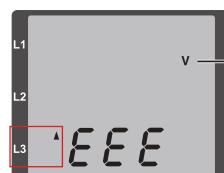
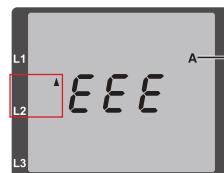




Fig. Example displays for measuring overrange

#### Measuring overrange parameter:

A measuring overrange can also be read out in addr. 600 in the following format:

| 0x       | 0 | 0 | 0 | 0 | 0 | 0 | 0                |
|----------|---|---|---|---|---|---|------------------|
| Phase 1: | 1 |   | 1 |   |   |   |                  |
| Phase 2: | 2 |   | 2 |   |   |   |                  |
| Phase 3: | 4 |   | 4 |   |   |   |                  |
| Current  |   |   |   |   |   |   | U <sub>L-N</sub> |

Fig. Measuring overrange parameter (addr. 600)

#### Examples of values in addr. 600

##### Measuring overrange ...

|             |   |                                        |
|-------------|---|----------------------------------------|
| 0x0000 0000 | : | Is not available                       |
| 0x0200 0000 | : | Current in L2                          |
| 0x0700 0000 | : | Current in all three phases            |
| 0x0004 0000 | : | Voltage in L3                          |
| 0x0205 0000 | : | Current in L2,<br>Voltage in L1 and L3 |

## 15.2 Error messages

The device displays both simple and serious errors as follows:

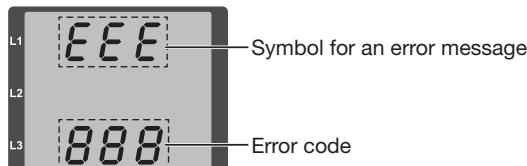



Fig. Error message

### Warnings (simple errors)

Simple errors can be acknowledged by pressing button 1 or 2. However, simple errors also reset themselves automatically as soon as a valid state is reached.



Fig. Error 500 (mains frequency)

- In some cases, the EEE 500 error is displayed again shortly after acknowledgement. Possible causes for the rapid recurrence of the error may be excessive interference signals on the lines or operation at the limit of the frequency or voltage measuring range.
- If a simple error is still present after switching back on, it will be displayed again.

### Serious error

If serious error 910 occurs, you must send the device to the manufacturer for inspection.

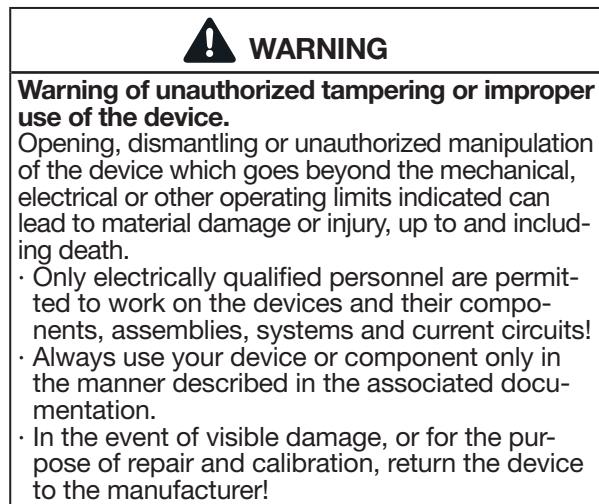


Fig. Serious error 910

| Error      | Error description                                                                                                                                                                                                                               |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EEE<br>910 | <p>Error when reading the internal memory (production data, master data, or settings, etc.).</p> <p>Solution:</p> <ul style="list-style-type: none"> <li>• Send the device and error description to the manufacturer for inspection.</li> </ul> |

| Error      | Error description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EEE<br>500 | <p>The mains frequency could not be determined.</p> <p>Possible causes:</p> <ul style="list-style-type: none"> <li>• The voltage at L1 is too low (see measuring range of voltage measurement in chapter „18. Technical data“ on page 63).</li> <li>• The mains frequency is not in the range of 45 to 65 Hz.</li> </ul> <p>Solution:</p> <ul style="list-style-type: none"> <li>• Check the voltage and connection of the measurement inputs.</li> <li>• Check the mains frequency.</li> <li>• Select a fixed frequency on the device.</li> </ul> |
| EEE<br>810 | <p>The device has detected an error in the configuration, therefore all settings have been reset to the factory settings and a restart has been performed.</p> <p>Possible cause:</p> <ul style="list-style-type: none"> <li>• Configuration settings were contradictory or otherwise incorrect.</li> </ul> <p>Solution:</p> <ul style="list-style-type: none"> <li>• Acknowledge the error and reconfigure the device.</li> </ul>                                                                                                                 |

## 16. Procedure in the event of a malfunction


| Failure mode                                                         | Cause                                                                                                                                                                           | Remedy                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No display                                                           | External fuse for the supply voltage has tripped.                                                                                                                               | Replace fuse.                                                                                                                                                                                                                                                                                                                                                    |
| No current display.                                                  | No measured voltage connected.                                                                                                                                                  | Connect measured voltage.                                                                                                                                                                                                                                                                                                                                        |
|                                                                      | No measured current connected.                                                                                                                                                  | Connect measured current.                                                                                                                                                                                                                                                                                                                                        |
| Displayed current is too great or too small.                         | Current measurement on the wrong phase.                                                                                                                                         | Check connection and correct if necessary.                                                                                                                                                                                                                                                                                                                       |
|                                                                      | Current transformer factor incorrectly programmed.                                                                                                                              | Set the transformer ratio of the current transformer correctly.                                                                                                                                                                                                                                                                                                  |
|                                                                      | The peak current value at the measurement input was exceeded by current harmonics.                                                                                              | Install current transformers with a larger transformer ratio.                                                                                                                                                                                                                                                                                                    |
|                                                                      | The current at the measurement input is too low.                                                                                                                                | Install current transformers with a smaller transformer ratio.                                                                                                                                                                                                                                                                                                   |
|                                                                      | Frequency could not be determined or is set incorrectly.                                                                                                                        | Set the frequency correctly.                                                                                                                                                                                                                                                                                                                                     |
| Displayed voltage is too low or too high.                            | Measurement on the wrong phase.                                                                                                                                                 | Check connection and correct if necessary.                                                                                                                                                                                                                                                                                                                       |
|                                                                      | Voltage transformer programmed incorrectly.                                                                                                                                     | Set the transformer ratio of the voltage transformer correctly.                                                                                                                                                                                                                                                                                                  |
|                                                                      | Frequency could not be determined or is set incorrectly.                                                                                                                        | Set the frequency correctly.                                                                                                                                                                                                                                                                                                                                     |
| Displayed voltage is too low.                                        | Overrange.                                                                                                                                                                      | Use a voltage transformer.                                                                                                                                                                                                                                                                                                                                       |
|                                                                      | The voltage peak value at the measurement input was exceeded due to harmonics current.                                                                                          | Attention! Make sure that the measurement inputs are not overloaded.                                                                                                                                                                                                                                                                                             |
| Phase shift, ind./cap.                                               | Current circuit is assigned to the wrong voltage circuit.                                                                                                                       | Check connection and correct if necessary.                                                                                                                                                                                                                                                                                                                       |
| Active power consumption / delivered is interchanged.                | At least one current transformer connection is reversed.                                                                                                                        | Check connection and correct if necessary.                                                                                                                                                                                                                                                                                                                       |
|                                                                      | A current circuit is assigned to the wrong voltage circuit.                                                                                                                     | Check connection and correct if necessary.                                                                                                                                                                                                                                                                                                                       |
| Active power too small or too great.                                 | The programmed current transformer ratio is incorrect.                                                                                                                          | Set the transformer ratio of the current transformer correctly.                                                                                                                                                                                                                                                                                                  |
|                                                                      | The current circuit is assigned to the wrong voltage circuit.                                                                                                                   | Check connection and correct if necessary.                                                                                                                                                                                                                                                                                                                       |
|                                                                      | The programmed voltage transformer ratio is incorrect.                                                                                                                          | Set the transformer ratio of the voltage transformer correctly.                                                                                                                                                                                                                                                                                                  |
| Display of "EEE" with error code.                                    | See error messages.                                                                                                                                                             | See „15.2 Error messages“ on page 60.                                                                                                                                                                                                                                                                                                                            |
| Display "EEE" with arrow pointing upwards (measuring range exceeded) | The measuring range has been exceeded (see „15.1 Overrange measurements“ on page 59).                                                                                           | <ul style="list-style-type: none"> <li>Check connection and correct if necessary.</li> <li>Set the connection variant for voltage measurement correctly (see „7.4.3 Connection variants for voltage measurement“ on page 27).</li> <li>Set the current or voltage transformer correctly (see „10.4 Setting the current transformer (CT)“ on page 38).</li> </ul> |
| No connection to the device.                                         | <ul style="list-style-type: none"> <li>Incorrect IP address or the IP address is already assigned in the network.</li> <li>A network switch requires authentication.</li> </ul> | <ul style="list-style-type: none"> <li>Correct the device IP address.</li> <li>Contact the network administrator.</li> </ul>                                                                                                                                                                                                                                     |
| Despite the above measures, the device does not function.            | Device defective.                                                                                                                                                               | Send the device and error description to the manufacturer for inspection.                                                                                                                                                                                                                                                                                        |

## 17. Service and maintenance

Prior to outbound delivery, the device is subjected to various safety tests and is marked with a seal. If a device is opened, the safety tests must be repeated. A warranty is only assumed for unopened devices.

### 17.1 Repair and calibration

Repair and calibration of the device must only be carried out by the manufacturer or an accredited laboratory! The manufacturer recommends calibrating the device every 5 years!



### 17.2 Front panel foil and display

Please note the following for the care and cleaning of the front foil and the display:

#### **INFORMATION**

##### **Material damage due to improper care and cleaning of the device.**

The use of water or other solvents, such as denatured alcohol, acids, acidic agents for the front foil or the display can damage or destroy the device during cleaning. Water can, for example, penetrate into the device housing and destroy the device.

- Clean the device, the front foil or the display with a soft cloth.
- Use a cloth moistened with clear water for heavy soiling.
- Clean the front panel foil and the display, e.g. fingerprints, with a special LCD cleaner and a lint-free cloth.
- Do not use acids or acidic agents to clean the devices.

### 17.3 Service

For questions not answered or described in this manual, please contact the manufacturer. Please be certain to have the following information ready to answer any questions:

- Device designation (see rating plate)
- Serial number (see rating plate)
- Firmware version (see system display)
- Measured voltage and supply voltage
- An exact error description.

### 17.4 Device adjustment

The manufacturer adjusts the devices before delivery. No readjustment is required when the environmental conditions are complied with.

### 17.5 Firmware update

To update the firmware, connect your device to a PC and access it via the **GridVis software**:

- Download the firmware from the download area of [www.janitza.com](http://www.janitza.com).
- Open the Firmware Update Wizard by clicking on "Update Device" in the "Extras" menu.
- Select the update file (.ZIP) and carry out the update.

A firmware update consists of several deletion and installation procedures. The display changes for each procedure and shows the progress as a percentage:

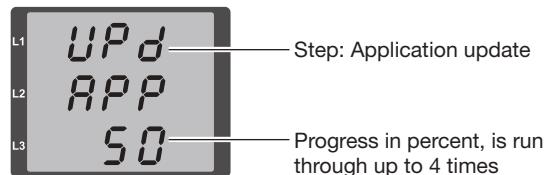



Fig. Updating the device application

- The device then restarts (display: "reboot") and connects to the network.
- Make sure that the firmware update was successful: the symbol must be displayed in GridVis.
- The device will be available again shortly afterwards.

## 18. Technical data

| General                                       |                                                                 |
|-----------------------------------------------|-----------------------------------------------------------------|
| Net weight (with attached plug-in connectors) | approx. 300 g (0.66 lbs)                                        |
| Package weight (incl. accessories)            | approx. 600 g (1.32 lbs)                                        |
| Data memory                                   | 8 MB                                                            |
| Backlight service life                        | 40,000 h (backlighting reduces to approx. 50% over this period) |
| Impact resistance                             | IK07 according to IEC 62262                                     |

| Transport and storage                                                                                    |                                |
|----------------------------------------------------------------------------------------------------------|--------------------------------|
| The following information applies to devices that are transported or stored in their original packaging. |                                |
| Free fall                                                                                                | 1 m (39.37 in)                 |
| Temperature                                                                                              | -25 .. +70° C (-13 .. +158° F) |
| Relative humidity                                                                                        | 0 .. 90% non-condensing        |

| Environmental conditions during operation                                                                                          |                                       |
|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| The UMG 96-EL is intended for weather-protected, stationary use.<br>Protection class II according to IEC 60536 (VDE 0106, Part 1). |                                       |
| Rated temperature range                                                                                                            | -10 .. +55° C (+14 .. +131° F)        |
| Relative humidity                                                                                                                  | 0 .. 75% non-condensing               |
| Operating elevation                                                                                                                | 0 .. 2000 m (6562 ft) above sea level |
| Pollution degree                                                                                                                   | 2                                     |
| Mounting orientation                                                                                                               | As desired                            |
| Ventilation                                                                                                                        | No forced ventilation required        |
| Foreign body/water protection                                                                                                      |                                       |
| - Front                                                                                                                            | IP40 according to EN60529             |
| - Rear                                                                                                                             | IP20 according to EN60529             |
| - Front with seal                                                                                                                  | IP54 according to EN60529             |

| Supply voltage                                                                     |                                                     |                                                                     |
|------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------|
| Option 230 V                                                                       | Nominal range                                       | AC 90 V .. 277 V (50/60 Hz) or<br>DC 90 V .. 250 V;<br>300 V CATIII |
|                                                                                    | Power consumption                                   | max. 3.5 VA / 1.5 W                                                 |
| Option 24 V                                                                        | Nominal range                                       | AC 24 V .. 90 V (50/60 Hz) or<br>DC 24 V .. 90 V;<br>150 V CATIII   |
|                                                                                    | Power consumption                                   | max. 2.5 VA / 1.5 W                                                 |
| Operating range                                                                    | ±10% of nominal range                               |                                                                     |
| Internal fuse, not replaceable                                                     | Type T1A / 250 V/277 V in accordance with IEC 60127 |                                                                     |
| Recommended overcurrent protective device for line protection<br>(IEC/UL approval) | 6 .. 16 A, characteristic B                         |                                                                     |

Recommendation for the maximum number of devices on a line circuit breaker:

Option 230 V: Line circuit breaker B 6A: max. 5 devices / Line circuit breaker B 16A: max. 13 devices

Option 24 V: Line circuit breaker B 6A: max. 3 devices / Line circuit breaker B 16A: max. 10 devices

| <b>Voltage measurement</b>                                                           |                                                                                  |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Three-phase 4-conductor systems with rated voltages up to                            | 277 V / 480 V (+10%) (TN/TT)                                                     |
| Three-phase 3-conductor systems, grounded or non-grounded, with rated voltages up to | IT 480 V (+10%) (TN/TT, IT)                                                      |
| Overvoltage category                                                                 | 300 V CAT III                                                                    |
| Rated surge voltage                                                                  | 4 kV                                                                             |
| Protection of the voltage measurement                                                | 1 .. 10 A tripping characteristic B (with IEC/UL approval)                       |
| Measuring range L-N                                                                  | 0 <sup>1)</sup> .. 300 V <sub>rms</sub> (max. overvoltage 520 V <sub>rms</sub> ) |
| Measuring range L-L                                                                  | 0 <sup>1)</sup> .. 510 V <sub>rms</sub> (max. overvoltage 900 V <sub>rms</sub> ) |
| Resolution                                                                           | 0.01 V                                                                           |
| Crest factor                                                                         | 2.45 (related to the measuring range)                                            |
| Impedance                                                                            | 3 MΩ/phase                                                                       |
| Power consumption                                                                    | approx. 0.1 VA                                                                   |
| Sampling frequency (per measurement channel)                                         | 21.33 kHz (50 Hz), 25.6 kHz (60 Hz)                                              |
| Frequency of the fundamental oscillation<br>- Resolution                             | 45 Hz .. 65 Hz<br>0.01 Hz                                                        |
| Fourier analysis                                                                     | 1st .. 40th Harmonics                                                            |

<sup>1)</sup> The UMG 96-EL can only determine measured values if a voltage L1-N greater than 20 V<sub>rms</sub> (4-conductor measurement) or a voltage L1-L2 greater than 34 V<sub>rms</sub> (3-conductor measurement) is applied to voltage input V1.

| <b>Current measurement</b>                   |                                        |
|----------------------------------------------|----------------------------------------|
| Nominal current                              | 5 A                                    |
| Measuring range                              | 0.005 .. 6 A <sub>rms</sub>            |
| Crest factor                                 | 1.98                                   |
| Resolution                                   | 0.1 mA (display 0.01 A)                |
| Overvoltage category                         | 300 V CAT II                           |
| Rated surge voltage                          | 2 kV                                   |
| Power consumption                            | approx. 0.2 VA (R <sub>i</sub> = 5 mΩ) |
| Overload for 1 s                             | 120 A (sinusoidal)                     |
| Sampling frequency (per measurement channel) | 21.33 kHz (50 Hz), 25.6 kHz (60 Hz)    |
| Fourier analysis                             | 1st .. 40th Harmonics                  |

| <b>Terminal connection capacity (supply voltage)</b>                            |                                         |
|---------------------------------------------------------------------------------|-----------------------------------------|
| Connectible conductors. Only one conductor may be connected per terminal point! |                                         |
| Single core, multi-core, fine-stranded                                          | 0.2 .. 4 mm <sup>2</sup> , AWG 24 .. 12 |
| Terminal pins, wire ferrules                                                    | 0.2 .. 2.5 mm <sup>2</sup>              |
| Tightening torque                                                               | 0.4 .. 0.5 Nm (3.54 .. 4.43 lbf in)     |
| Strip length                                                                    | 7 mm (0.276 in)                         |

| <b>Connection capacity of the terminal points (voltage and current measurement)</b> |                                         |                                         |
|-------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|
|                                                                                     | <b>Current</b>                          | <b>Voltage</b>                          |
| Single core, multi-core, fine-stranded                                              | 0.2 .. 4 mm <sup>2</sup> , AWG 24 .. 12 | 0.2 .. 4 mm <sup>2</sup> , AWG 24 .. 12 |
| Wire ferrules without collar                                                        | 0.2 .. 4 mm <sup>2</sup>                | 0.2 .. 2.5 mm <sup>2</sup>              |
| Wire ferrules with plastic collar                                                   | 0.2 .. 2.5 mm <sup>2</sup>              | 0.2 .. 2.5 mm <sup>2</sup>              |
| Tightening torque                                                                   | 0.4 .. 0.5 Nm (3.54 .. 4.43 lbf in)     | 0.4 .. 0.5 Nm (3.54 .. 4.43 lbf in)     |
| Strip length                                                                        | 7 mm (0.275 in)                         | 7 mm (0.276 in)                         |

| <b>Ethernet interface</b> |      |
|---------------------------|------|
| Connection                | RJ45 |
| Internet protocol         | IPv4 |

| <b>Potential isolation and electrical safety of the interfaces</b>                                                            |  |
|-------------------------------------------------------------------------------------------------------------------------------|--|
| The Ethernet interface has                                                                                                    |  |
| · Double insulation to the inputs of the voltage and current measurement.                                                     |  |
| · A functional insulation to the supply voltage.                                                                              |  |
| The interfaces of the connected devices require double or reinforced insulation to mains voltages (according to IEC 61010-1). |  |

## 18.1 Performance characteristics of functions

| Function           | Symbol | Accuracy class       | Measuring range                         |
|--------------------|--------|----------------------|-----------------------------------------|
| Frequency          | f      | 0.05 (IEC61557-12)   | 45 .. 65 Hz                             |
| Voltage            | U L-N  | 0.2 (IEC61557-12)    | 0 <sup>1)</sup> .. 300 V <sub>rms</sub> |
| Voltage            | U L-L  | 0.2 (IEC61557-12)    | 0 <sup>2)</sup> .. 510 V <sub>rms</sub> |
| Voltage harmonics  | Uh     | Cl. 1 (IEC61000-4-7) | Up to 2.5 kHz                           |
| THD of the voltage | THDu   | 1 (IEC61557-12)      | Up to 2.5 kHz                           |

<sup>1)</sup> A voltage > 20 V<sub>rms</sub> must be applied to voltage input V1.

<sup>2)</sup> A voltage > 34 V<sub>rms</sub> must be applied to voltage input V1.

### Accuracy classes with ../5A current transformers (nominal current 5 A)

| Function                             | Symbol        | Accuracy class                          | Measuring range             |
|--------------------------------------|---------------|-----------------------------------------|-----------------------------|
| Total active power                   | P             | 0.5 (IEC61557-12)                       | 0 .. 5.4 kW <sup>3)</sup>   |
| Total reactive power                 | QA, Qv        | 1 (IEC61557-12)                         | 0 .. 5.4 kvar <sup>3)</sup> |
| Total apparent power                 | SA, Sv        | 0.5 (IEC61557-12)                       | 0 .. 5.4 kVA <sup>3)</sup>  |
| Total active energy                  | Ea            | 0.5 (IEC61557-12)<br>0.5S (IEC62053-22) | 0 .. 999 999 999 GWh        |
| Total reactive energy                | ErA, ErV      | 2 (IEC61557-12)                         | 0 .. 999 999 999 Gvarh      |
| Total apparent energy                | EapA,<br>EapV | 0.5 (IEC61557-12)                       | 0 .. 999 999 999 GVAh       |
| Phase current                        | I             | 0.2 (IEC61557-12)                       | 0.005 .. 6 A <sub>rms</sub> |
| Neutral conductor current calculated | INc           | 1 (IEC61557-12)                         | 0.03 .. 25 A                |
| Power factor                         | PFA, PFV      | 0.5 (IEC61557-12)                       | 0.00 .. 1.00                |
| Current harmonics                    | Ih            | Cl. 1 (IEC61000-4-7)                    | Up to 2.5 kHz               |
| THD of the current                   | THDi          | 1 (IEC61557-12)                         | Up to 2.5 kHz               |

<sup>3)</sup> At the measurement inputs, i.e. without consideration of current and voltage transformer ratios.

### Accuracy classes with ../1A current transformers (nominal current 1 A)

| Function                             | Symbol        | Accuracy class                      | Measuring range             |
|--------------------------------------|---------------|-------------------------------------|-----------------------------|
| Total active power                   | P             | 1 (IEC61557-12)                     | 0 .. 5.4 kW <sup>3)</sup>   |
| Total reactive power                 | QA, Qv        | 1 (IEC61557-12)                     | 0 .. 5.4 kvar <sup>3)</sup> |
| Total apparent power                 | SA, Sv        | 1 (IEC61557-12)                     | 0 .. 5.4 kVA <sup>3)</sup>  |
| Total active energy                  | Ea            | 1 (IEC61557-12)<br>1S (IEC62053-22) | 0 .. 999 999 999 GWh        |
| Total reactive energy                | ErA, ErV      | 2 (IEC61557-12)                     | 0 .. 999 999 999 Gvarh      |
| Total apparent energy                | EapA,<br>EapV | 1 (IEC61557-12)                     | 0 .. 999 999 999 GVAh       |
| Phase current                        | I             | 0.5 (IEC61557-12)                   | 0.005 .. 6 A <sub>rms</sub> |
| Neutral conductor current calculated | INc           | 1 (IEC61557-12)                     | 0.03 .. 25 A                |
| Power factor                         | PFA, PFV      | 0.5 (IEC61557-12)                   | 0.00 .. 1.00                |
| Current harmonics                    | Ih            | Cl. 1 (IEC61000-4-7)                | Up to 2.5 kHz               |
| THD of the current                   | THDi          | 1 (IEC61557-12)                     | Up to 2.5 kHz               |

<sup>3)</sup> At the measurement inputs, i.e. without consideration of current and voltage transformer ratios.

## 19. Appendix

### 19.1 Modbus addresses of frequently used measured values

| Address | Format | Description                               | Access right | Unit |
|---------|--------|-------------------------------------------|--------------|------|
| 19000   | float  | Voltage L1-N                              | RD           | V    |
| 19002   | float  | Voltage L2-N                              | RD           | V    |
| 19004   | float  | Voltage L3-N                              | RD           | V    |
| 19006   | float  | Voltage L1-L2                             | RD           | V    |
| 19008   | float  | Voltage L2-L3                             | RD           | V    |
| 19010   | float  | Voltage L3-L1                             | RD           | V    |
| 19012   | float  | Current I L1                              | RD           | A    |
| 19014   | float  | Current I L2                              | RD           | A    |
| 19016   | float  | Current I L3                              | RD           | A    |
| 19018   | float  | Vector sum; IN=I1+I2+I3                   | RD           | A    |
| 19020   | float  | Real power P1 L1N                         | RD           | W    |
| 19022   | float  | Real power P2 L2N                         | RD           | W    |
| 19024   | float  | Real power P3 L3N                         | RD           | W    |
| 19026   | float  | Sum; Psum3=P1+P2+P3                       | RD           | W    |
| 19028   | float  | Apparent power S1 L1N                     | RD           | VA   |
| 19030   | float  | Apparent power S2 L2N                     | RD           | VA   |
| 19032   | float  | Apparent power S3 L3N                     | RD           | VA   |
| 19034   | float  | Sum; Ssum3=S1+S2+S3                       | RD           | VA   |
| 19036   | float  | Fund. reactive power Q1 L1N               | RD           | var  |
| 19038   | float  | Fund. reactive power Q2 L2N               | RD           | var  |
| 19040   | float  | Fund. reactive power Q3 L3N               | RD           | var  |
| 19042   | float  | Fund. Sum; Qsum3=Q1+Q2+Q3                 | RD           | var  |
| 19044   | float  | Cos( $\phi$ ); UL1 I1 (fundamental comp.) | RD           |      |
| 19046   | float  | Cos( $\phi$ ); UL2 I2 (fundamental comp.) | RD           |      |
| 19048   | float  | Cos( $\phi$ ); UL3 I3 (fundamental comp.) | RD           |      |
| 19050   | float  | Measured frequency 10 sec                 | RD           | Hz   |
| 19052   | float  | Rotation field; 1=right, 0=none, -1=left  | RD           |      |
| 19054   | float  | Real energy L1                            | RD           | Wh   |
| 19056   | float  | Real energy L2                            | RD           | Wh   |
| 19058   | float  | Real energy L3                            | RD           | Wh   |
| 19060   | float  | Real energy L1..L3                        | RD           | Wh   |
| 19062   | float  | Real energy L1, consumed                  | RD           | Wh   |
| 19064   | float  | Real energy L2, consumed                  | RD           | Wh   |
| 19066   | float  | Real energy L3, consumed                  | RD           | Wh   |
| 19068   | float  | Real energy L1..L3, consumed              | RD           | Wh   |
| 19070   | float  | Real energy L1, delivered                 | RD           | Wh   |
| 19072   | float  | Real energy L2, delivered                 | RD           | Wh   |
| 19074   | float  | Real energy L3, delivered                 | RD           | Wh   |
| 19076   | float  | Real energy L1..L3, delivered             | RD           | Wh   |
| 19078   | float  | Apparent energy L1                        | RD           | VAh  |
| 19080   | float  | Apparent energy L2                        | RD           | VAh  |
| 19082   | float  | Apparent energy L3                        | RD           | VAh  |
| 19084   | float  | Apparent energy L1..L3                    | RD           | VAh  |
| 19086   | float  | Reactive energy L1                        | RD           | varh |
| 19088   | float  | Reactive energy L2                        | RD           | varh |
| 19090   | float  | Reactive energy L3                        | RD           | varh |
| 19092   | float  | Reactive energy L1..L3                    | RD           | varh |
| 19094   | float  | Reactive energy ind. L1                   | RD           | varh |
| 19096   | float  | Reactive energy ind. L2                   | RD           | varh |
| 19098   | float  | Reactive energy ind. L3                   | RD           | varh |
| 19100   | float  | Reactive energy ind. L1..L3               | RD           | varh |

| Address | Format | Description                 | Access right | Unit |
|---------|--------|-----------------------------|--------------|------|
| 19102   | float  | Reactive energy cap. L1     | RD           | varh |
| 19104   | float  | Reactive energy cap. L2     | RD           | varh |
| 19106   | float  | Reactive energy cap. L3     | RD           | varh |
| 19108   | float  | Reactive energy cap. L1..L3 | RD           | varh |
| 19110   | float  | THD, U L1-N                 | RD           | %    |
| 19112   | float  | THD, U L2-N                 | RD           | %    |
| 19114   | float  | THD, U L3-N                 | RD           | %    |
| 19116   | float  | THD, I1                     | RD           | %    |
| 19118   | float  | THD, I2                     | RD           | %    |
| 19120   | float  | THD, I3                     | RD           | %    |

## 19.2 Number formats

| Type   | Size   | Minimum   | Maximum    |
|--------|--------|-----------|------------|
| short  | 16 bit | $-2^{15}$ | $2^{15}-1$ |
| ushort | 16 bit | 0         | $2^{16}-1$ |
| int    | 32 bit | $-2^{31}$ | $2^{31}-1$ |
| uint   | 32 bit | 0         | $2^{32}-1$ |
| float  | 32 bit | IEEE 754  | IEEE 754   |

## 19.3 Note on saving measured values and configuration data

### INFORMATION

#### Saving measured values and configuration data

In the event of an **operating voltage failure**, the recording could be interrupted for a maximum of 5 minutes. The following **measured values are saved by the device every 5 minutes** in a non-volatile memory:

- Comparator timer
- S0 meter readings
- Minimum, maximum and average values (without date and time)
- Energy values
- Operating time

**The device saves configuration data immediately!**

#### 19.4 Dimensional drawings

The figures are for illustration purposes only and are not to scale.

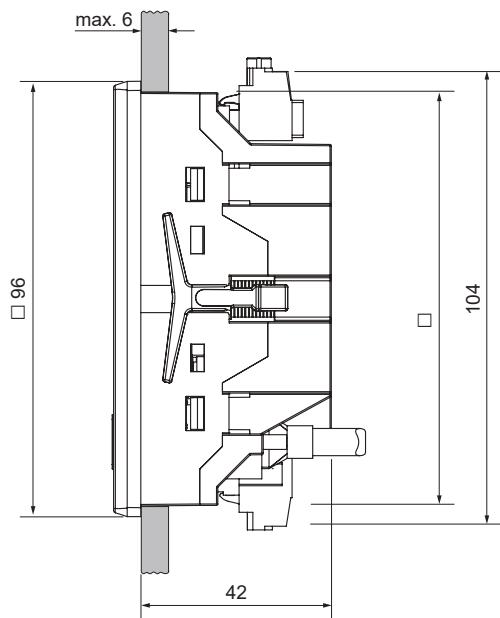



Fig. Side view

All dimensions in mm

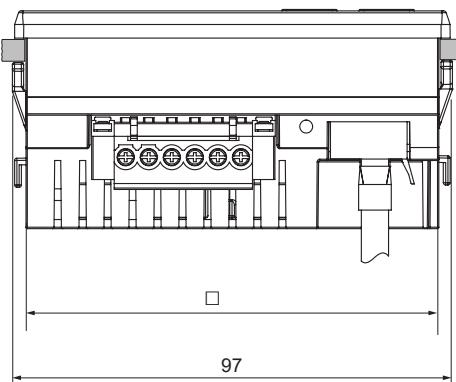



Fig. Bottom view

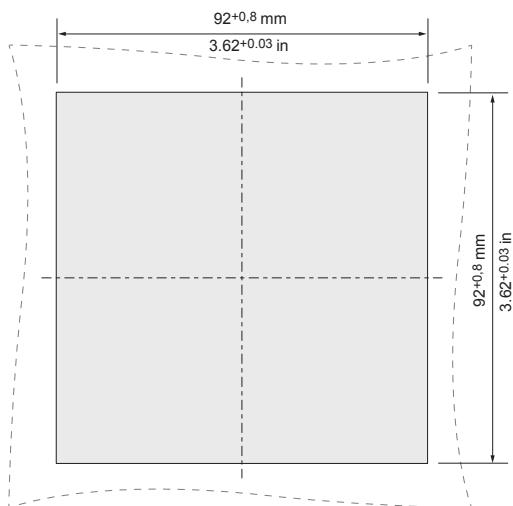
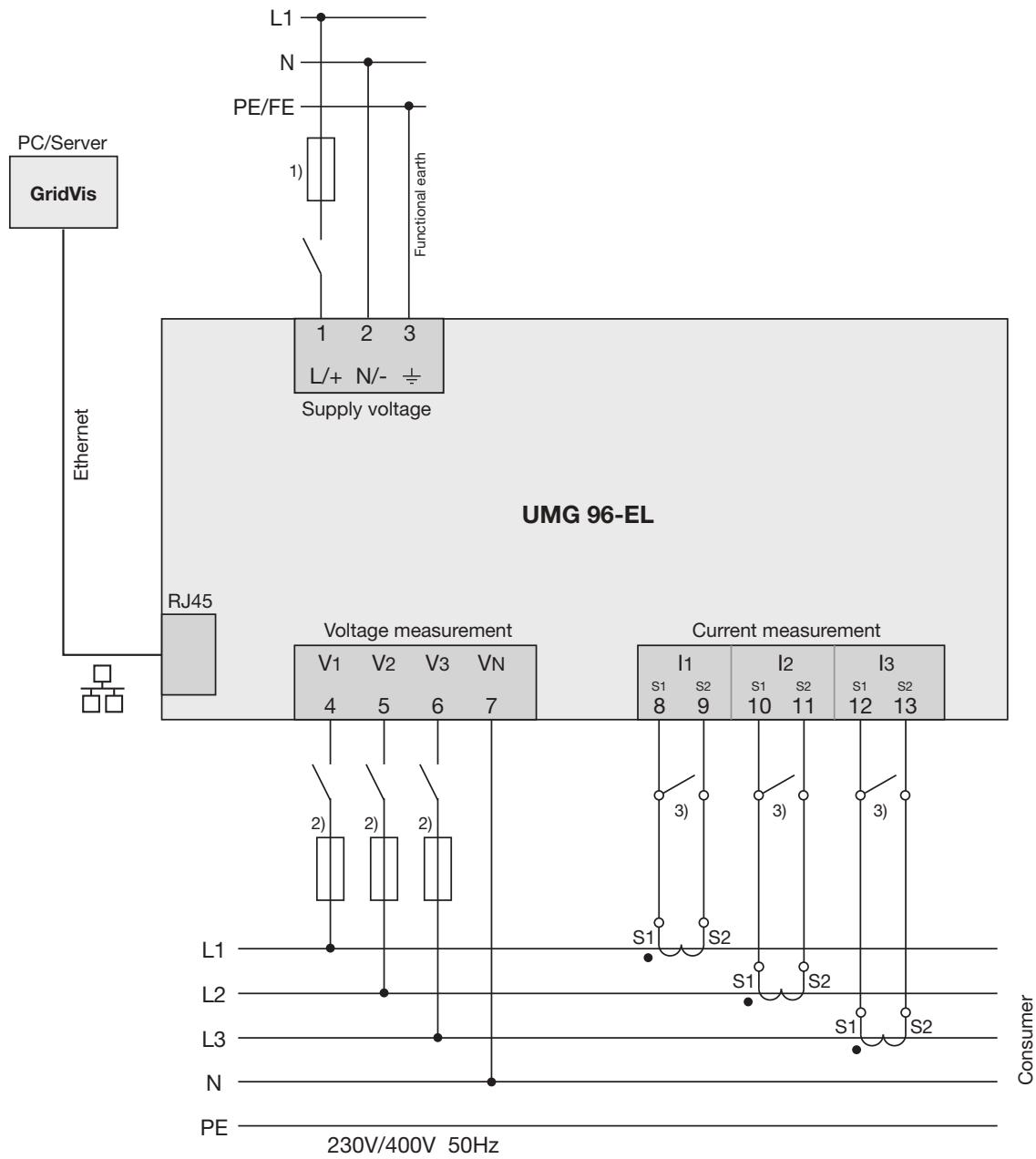




Fig. Cutout dimensions

## 19.5 Connection example



- 1) UL/IEC approved overcurrent protective device
- 2) UL/IEC approved overcurrent protective device
- 3) Short circuit bridges (external)

## 19.6 Quick guide to operation

### Changing current transformer setting

Go to the programming mode:

- Press and hold buttons 1 and 2 simultaneously for approx. 1 second.
- The symbols for programming mode **PRG** and for the current transformer **CT** appear.

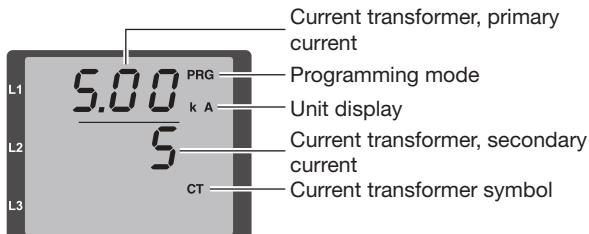



Fig. Setting the current transformer ratio

- Press button 1 to confirm the selection. The first digit of the input area for the primary current blinks.

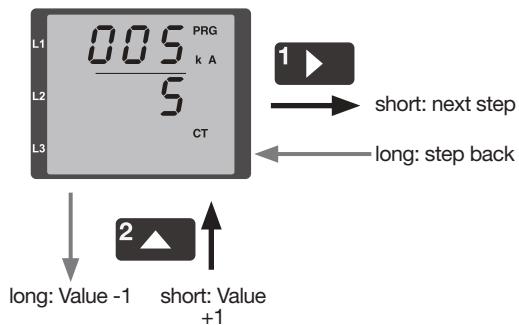



Fig. Button functions in programming mode

#### Change the primary current

- Press button 2 to change the blinking digit.
- Press button 1 to select the next digit to be changed. The digit selected for a change blinks.
- Note: If the entire number is blinking, the decimal point can be moved using button 2.

#### Change the secondary current

- Only 1 A or 5 A can be set as the secondary current.
- Use button 1 to select the secondary current.
- Press button 2 to change the blinking digit.

#### Exit the programming mode

- Press buttons 1 and 2 simultaneously to save the change and go to display mode.

### Retrieving measured values

Go to the display mode:

- If programming mode is still active (**PRG** symbol on the display), go to the display mode by pressing buttons 1 and 2 simultaneously for approx. 1 second.
- A measuring display, e.g. for the voltage, appears.

#### Control via the buttons

- Press button 1 to display measured values that relate to the currently displayed measured value (average values, maximum values, etc.).
- Press button 2 to switch to go to other measured values (voltage, current, power, etc.).

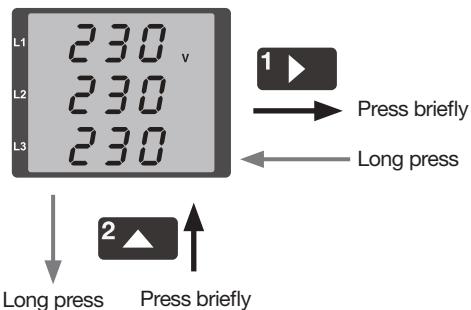



Fig. Button functions in display mode

# **Janitza®**

Janitza electronics GmbH  
Vor dem Polstück 6 | 35633 Lahnau  
Germany

Tel.: +49 6441 - 9642-0  
[info@janitza.com](mailto:info@janitza.com) | [www.janitza.com](http://www.janitza.com)